多元函数微分学的几何应用

一、一元向量值函数及其导数

1.1、一元向量函数

在这里插入图片描述

1.1.1、一元向量函数定义

  • 普通一元函数: 实数值 → \rightarrow 实数值, 称为数量函数
  • 一元向量函数: 实数值 → \rightarrow 向量,称为向量函数
  • 一元向量函数是普通一元函数的推广
    在这里插入图片描述

1.1.2、极限;极限存在充要条件:分量函数的极限都存在

在这里插入图片描述

1.1.3、连续;连续的充要条件:分量函数都连续

在这里插入图片描述

1.1.4、导数(导向量)

在这里插入图片描述

1.1.5、导向量运算法则

在这里插入图片描述

1.1.6、导向量的几何意义: 终端曲线的切向量,方向与t增长方向一致

在这里插入图片描述

二、空间曲线的切线和法平面

法平面: 切线在空间的所有法线组成的平面,法平面的法线就是该切线

2.1、第一种形式:x,y,z都是一元函数

在这里插入图片描述

2.2、第二种形式

在这里插入图片描述

2.3、第三种形式

在这里插入图片描述

三、曲面的切平面和法线

3.0.1、将曲线参数带入曲面方程,得到一个恒等式

在这里插入图片描述

3.0.1、对恒等式求导

在这里插入图片描述

3.0.3、切面法向量就是 { F x ( M 0 ) , F y ( M 0 ) , F z ( M 0 ) } \{ F_x(M_0), F_y(M_0), F_z(M_0) \} {Fx(M0),Fy(M0),Fz(M0)}

在这里插入图片描述

3.1、切平面

在这里插入图片描述

3.2、法线

在这里插入图片描述

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页