wuzlun
码龄19年
关注
提问 私信
  • 博客:808,502
    社区:65
    808,567
    总访问量
  • 27
    原创
  • 1,100,334
    排名
  • 345
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2006-03-31
博客简介:

wuzlun的专栏

博客描述:
路漫漫其修远兮,吾将上下而求索
查看详细资料
个人成就
  • 获得504次点赞
  • 内容获得64次评论
  • 获得3,092次收藏
  • 代码片获得671次分享
创作历程
  • 28篇
    2018年
成就勋章
TA的专栏
  • Python
    10篇
  • Python绘图
    10篇
  • 数据分析
    17篇
  • 利用Python进行数据分析
    12篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

354人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

matplotlib 与 seaborn 中出现中文乱码的解决方法(ubuntu下亲测有用)

原文:https://www.cnblogs.com/ToDoToTry/p/7793137.htmlLinux、Mac osx 系统中,出现 matplotlib 或 seaborn 绘图中有中文乱码的情形,可以考虑使用以下方式处理: 到 anaconda 的 matplotlib 中查看是否有 simhei.ttf 字体: cd ~/anaconda3/lib/python3.5...
转载
发布博客 2018.05.24 ·
3240 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Python绘图总结(seaborn篇)之线性关系

学习https://seaborn.pydata.org 记录,描述不一定准确,具体请参考官网%matplotlib inlineimport numpy as npimport pandas as pdfrom scipy import stats, integrateimport seaborn as snsimport matplotlib.pyplot as plt# s...
原创
发布博客 2018.05.15 ·
9405 阅读 ·
5 点赞 ·
1 评论 ·
27 收藏

Python绘图总结(seaborn篇)之数据分类

学习https://seaborn.pydata.org 记录,描述不一定准确,具体请参考官网%matplotlib inlineimport numpy as npimport pandas as pdfrom scipy import stats, integrateimport seaborn as snsimport matplotlib.pyplot as plt# s...
原创
发布博客 2018.05.15 ·
14083 阅读 ·
4 点赞 ·
0 评论 ·
77 收藏

Python绘图总结(seaborn篇)之数据分布

%matplotlib inlineimport numpy as npimport pandas as pdfrom scipy import stats, integrateimport seaborn as snsimport matplotlib.pyplot as plt# plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示...
原创
发布博客 2018.05.15 ·
6000 阅读 ·
2 点赞 ·
2 评论 ·
16 收藏

Python绘图总结(seaborn篇)之数据分布

学习https://seaborn.pydata.org/index.html记录,描述不一定准确,具体请参考官网%matplotlib inlineimport numpy as npimport pandas as pdfrom scipy import stats, integrateimport seaborn as snsimport matplotlib.pyplot a...
原创
发布博客 2018.05.15 ·
60682 阅读 ·
33 点赞 ·
3 评论 ·
252 收藏

利用Python进行数据分析笔记-pandas建模(scikit-learn篇)

跟着教程学习了一段时间数据分析,越学感觉坑越多。于是花了一个星期仔细看了下《利用Python进行数据分析》。写在这里主要是记录下,方便自己查看。scikit-learn简介scikit-learn是一个被广泛使用的python机器学习工具包。里面包含了很多监督式学习和非监督式学习的模型,可以实现分类,聚类,预测等任务。虽然scikit-learn并没有和pandas深度整合,但在训练模...
原创
发布博客 2018.05.14 ·
3719 阅读 ·
2 点赞 ·
0 评论 ·
17 收藏

利用Python进行数据分析笔记-pandas建模(statsmodels篇)

跟着教程学习了一段时间数据分析,越学感觉坑越多。于是花了一个星期仔细看了下《利用Python进行数据分析》。写在这里主要是记录下,方便自己查看。statsmodels简介statsmodels是一个有很多统计模型的python库,能完成很多统计测试,数据探索以及可视化。它也包含一些经典的统计方法,比如贝叶斯方法和一个机器学习的模型。statsmodels中的模型包括:...
原创
发布博客 2018.05.14 ·
48543 阅读 ·
23 点赞 ·
5 评论 ·
176 收藏

利用Python进行数据分析笔记-pandas建模(Patsy篇)

跟着教程学习了一段时间数据分析,越学感觉坑越多。于是花了一个星期仔细看了下《利用Python进行数据分析》。写在这里主要是记录下,方便自己查看。import numpy as npimport pandas as pdimport patsy# 利用Patsy创建模型描述Patsy是一个python库,用于描述统计模型(尤其是线性模型),方法是通过一个叫做公式语法(...
原创
发布博客 2018.05.11 ·
12952 阅读 ·
5 点赞 ·
8 评论 ·
46 收藏

利用Python进行数据分析笔记-时间序列(移动窗口函数)

Moving Window Functions(移动窗口函数)一种用于时间序列操作的重要用法,是使用滑窗(sliding windown)或呈指数降低的权重(exponentially decaying weights),来对时间序列进行统计值计算和其他一些函数计算。 这个对于消除噪声或有缺陷的数据是很有用的。这里我们称之为Moving Window Functions(移动窗口函数),不过其...
原创
发布博客 2018.05.11 ·
16741 阅读 ·
8 点赞 ·
2 评论 ·
78 收藏

利用Python进行数据分析笔记-时间序列(时区、周期、频率)

时区处理时区可以理解为UTC的偏移(offset),例如,在夏令时,纽约时间落后于UTC时间四个小时,而在一年的其他时间里,纽约时间落后于UTC时间五个小时。在python中,时区信息来自第三方的pytz库,这个库利用的是奥尔森数据库,这个数据库汇集了世界时区信息。这个信息对于历史数据很重要,因为夏令时(daylight saving time,DST)的交接日(transition da...
原创
发布博客 2018.05.11 ·
7795 阅读 ·
2 点赞 ·
0 评论 ·
23 收藏

利用Python进行数据分析笔记-时间序列(转换、索引、偏移)

时间序列指能在任何能在时间上观测到的数据。很多时间序列是有固定频率(fixed frequency)的,意思是数据点会遵照某种规律定期出现,比如每15秒,每5分钟,或每个月。时间序列也可能是不规律的(irregular),没有一个固定的时间规律。如何参照时间序列数据取决于我们要做什么样的应用,我们可能会遇到下面这些:Timestamps(时间戳),具体的某一个时刻Fixed periods...
原创
发布博客 2018.05.11 ·
3429 阅读 ·
2 点赞 ·
0 评论 ·
26 收藏

利用Python进行数据分析笔记-数据加工(分组、聚合及分组应用)

%matplotlib inlineimport matplotlib.pyplot as pltimport numpy as npimport pandas as pd# 数据汇总和组操作### 1、GroupBy Mechanics(分组机制)Hadley Wickham,是很多R语言有名库的作者,他描述group operation(组操作)为s...
原创
发布博客 2018.05.11 ·
3342 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

利用Python进行数据分析笔记-数据加工(合并、整形、旋转及分层索引)

在很多应用中,数据通常散落在不同的文件或数据库中,并不方便进行分析。数据加工就是对这些数据的统一。join:连接combine:合并reshape:整形merge:归并concatenate:串联pivot:旋转stack:堆叠import pandas as pdimport numpy as np合并数据集pandas里有几种方法可以合并数据:...
原创
发布博客 2018.05.11 ·
1463 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

利用Python进行数据分析笔记-数据清洗

在pandas中,missing data呈现的方式有些缺点的,但对大部分用户能起到足够的效果。对于数值型数据,pandas用浮点值Nan(Not a Number)来表示缺失值。我们称之为识别符(sentinel value),这种值能被轻易检测到数据缺失在pandas中,我们使用了R语言中的一些传统,把缺失值表示为NA(not available)。在统计应用里,NA数据...
原创
发布博客 2018.05.11 ·
2430 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

利用Python进行数据分析笔记-读写数据

Pandas方法1、读取文件pandas有很多用来读取表格式数据作为dataframe的函数,下面列出来一些。其中read_csv和read_tabel是最经常用到的:import pandas as pdimport numpy as np# read_csv方法df = pd.read_csv('../examples/ex1.csv')df...
原创
发布博客 2018.05.11 ·
3109 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

利用Python进行数据分析笔记-pandas基础

import pandas as pdfrom pandas import Series, DataFrameimport numpy as npSeries基础obj = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])obj d 4 b 7 a -5 c...
原创
发布博客 2018.05.11 ·
895 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

利用Python进行数据分析笔记-Numpy基础

跟着教程学习了一段时间数据分析,越学感觉坑越多。于是花了一个星期仔细看了下《利用Python进行数据分析》。写在这里主要是记录下,方便自己查看。import matplotlib.pyplot as pltimport numpy as np创建n维数组1、使用array函数最简单的方法使用array函数,输入一个序列即可,比如list# 随机生成数据data = ...
原创
发布博客 2018.05.11 ·
723 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Python绘图总结(Matplotlib篇)之pandas内建可视化工具

matplotlib是一个相对底层的工具。pandas自身有内建的可视化工具。1、Line Plots(线图)Series和DataFrame各自都有plot属性,用来做一些比较基本的绘图类型。默认,plot()会绘制线图:# 使用该魔法,不用写plt.show()# %matplotlib notebookimport matplotlib.pyplot as plt...
原创
发布博客 2018.05.08 ·
1964 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

Kaggle初体验-机器学习之泰坦尼克号乘客生存预测(下)

上篇中我们用常规方法分析了泰坦尼克号事件中乘客的生存情况,最后得出结论,已知某人的资料并不能判断他或她是生存或死亡。上篇链接:https://blog.csdn.net/wuzlun/article/details/80189766那么接下来我们用机器学习的方法来分析。# 再次导入本次用到的工具# 使用该魔法,不用写plt.show()%matplotlib inline ...
原创
发布博客 2018.05.04 ·
1811 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

Kaggle初体验-机器学习之泰坦尼克号乘客生存预测(上)

学习数据分析也有段时间了,都只是使用一些简单图表来分析数据,本周将开启全新的学习旅程:机器学习(^_^偷笑)。本次通过Kaggle所举办的泰坦尼克挑战赛 来机器学习分析并预测某一乘客的生存或死亡。Kaggle提供两部分数据,训练数据(train.csv)和测试数据(test.csv),我们通过对训练数据分析,构建一个模型,并用这个模型来加载预测数据,分析test.csv表中乘客生存或死亡。最后...
原创
发布博客 2018.05.04 ·
3114 阅读 ·
2 点赞 ·
0 评论 ·
17 收藏
加载更多