项目背景
在当今信息爆炸的时代,文本数据呈现出爆炸式增长。从海量文本中提取有价值的信息,发现潜在的主题,并分析文本的情感倾向,成为了一个重要的研究课题。本项目基于Python开发了一个完整的文本分析系统,集成了LDA主题模型和情感分析功能,可以帮助用户快速实现文本的主题挖掘和情感分析。
系统架构
系统采用模块化设计,主要包含以下核心模块:
数据预处理模块
- 文本清洗
- 中文分词
- 停用词过滤
主题分析模块
- LDA主题模型
- 主题词提取
- 主题可视化
情感分析模块
- 基于SnowNLP的情感分析
- 主题情感得分计算
可视化模块
- 词云图生成
- 主题分布可视化
功能特点
文本预处理
- 支持中文文本处理
- 自动去除标点符号和特殊字符
- 支持自定义停用词表
- 使用jieba进行中文分词
主题分析
- 基于LDA的主题建模
- 支持自定义主题数量
- 提取每个主题的关键词
- 计算主题分布
情感分析
- 基于SnowNLP的情感分析
- 支持句子级别情感分析
- 计算主题情感得分
- 结果可视化展示
数据可视化
- 生成词云图
- 主题分布可视化
- 情感得分展示
- 结果导出Excel
技术实现
开发环境
# 核心依赖包
pandas==1.3.0
jieba==0.42.1
wordcloud==1.8.1
matplotlib==3.4.3
scikit-learn==0.24.2
pyLDAvis==2.1.2
snownlp==0.12.3
核心代码实现
文本预处理
def pre_process(texts, stopwords):
filtered_words_list = []
for text in texts:
# 清理文本
cleaned = clean_text(text)
# 使用jieba分词
words = jieba.cut(cleaned)
word_list = list(words)
# 去除停用词
filtered_words = remove_stopwords(word_list, stopwords)
filtered_words_list.extend(filtered_words)
return filtered_words_list
LDA主题模型
# 文本向量化
vectorizer = CountVectorizer()
doc_term_matrix = vectorizer.fit_transform(processed_texts)
# 训练LDA模型
lda_model = LatentDirichletAllocation(n_components=3, random_state=42)
lda_model.fit(doc_term_matrix)
情感分析
def get_topic_sentence_score(texts, doc_term_matrix, lda_model):
topic_assignments = []
for i in range(doc_term_matrix.shape[0]):
topic_probabilities = lda_model.transform(doc_term_matrix[i])
topic_assignments.append(topic_probabilities.argmax())
topic_sentiments = {i: [] for i in range(lda_model.n_components)}
for i, sentence in enumerate(texts):
s = SnowNLP(sentence)
sentiment_score = s.sentiments
topic_sentiments[topic_assignments[i]].append(sentiment_score)
return [round(sum(sentiments) / len(sentiments) if sentiments else 0, 4)
for topic_num, sentiments in topic_sentiments.items()]
使用说明
环境配置
# 安装依赖包
pip install -r requirements.txt
数据准备
- 准备Excel格式的文本数据
- 准备停用词表(stopword.txt)
- 确保安装了中文字体(SimHei.ttf)
运行示例
# 1. 加载停用词
stopwords = load_stopwords('stopword.txt')
# 2. 读取文本数据
texts = read_excel('input.xlsx')
# 3. 文本预处理
processed_texts = pre_process(texts, stopwords)
# 4. 生成词云
plot_wordcloud(processed_texts, 'wordcloud.png')
# 5. LDA主题分析
vectorizer = CountVectorizer()
doc_term_matrix = vectorizer.fit_transform(processed_texts)
lda_model = LatentDirichletAllocation(n_components=3, random_state=42)
lda_model.fit(doc_term_matrix)
# 6. 保存主题词
save_top_words(vectorizer, lda_model, 'top_words.xlsx')
# 7. 情感分析
score_sentence = get_topic_sentence_score(texts, doc_term_matrix, lda_model)
项目特色
完整性
- 提供完整的文本分析流程
- 支持从数据预处理到结果可视化的全流程
易用性
- 接口设计简单直观
- 提供详细的使用说明
- 支持自定义参数配置
可扩展性
- 模块化设计
- 易于添加新功能
- 支持自定义分析流程
可视化
- 丰富的可视化展示
- 支持多种图表类型
- 结果导出格式多样
总结
本项目实现了一个功能完整的文本分析系统,通过LDA主题模型和情感分析,可以帮助用户快速实现文本的主题挖掘和情感分析。系统具有以下优势:
- 支持中文文本处理
- 提供完整的分析流程
- 结果可视化展示
- 易于使用和扩展
2万+

被折叠的 条评论
为什么被折叠?



