基于深度学习的NILM负荷分解

使用keras,TF2,UK数据集,不同的网络结构和算法。

从实践中学习神经网络,NILM,数据处理和迭代网络。

用深度学习网络,来进行负荷分解,预测和电器的识别。

日常工作有点忙,不过我争取每周完成两到三篇

本周末开始写哈~~

需要的同学们 可以关注哈,我建个QQ群1070535031

先这样 本周开始更新这个
——————————————————————————————
我这先给几个paper,可以先学习和了解一下别家大佬的解题思路,和网络设计。qq群里有,然后CSDN我也发一下参考paper(https://download.csdn.net/download/wwb1990/12591161

### 使用深度学习框架搭建NILM模型 #### 构建数据集 为了训练一个有效的NILM模型,需要准备大量的用电设备功率消耗时间序列数据。这些数据通常来自智能电表或者其他高频率采样的传感器装置[^1]。 #### 数据预处理 在获取原始数据之后,对其进行必要的清洗和转换操作至关重要。这可能涉及到去除异常值、填补缺失的数据点以及标准化数值范围等过程。对于某些特定类型的电器,还需要标记其开启关闭状态作为监督信号的一部分。 #### 设计网络架构 采用卷积神经网络(CNN)来捕捉输入特征中的局部模式是非常有效的方法之一。可以设计一个多层的一维CNN结构用于提取不同尺度下的特征表示。每一层都由若干个滤波器组成,它们会在滑动窗口内计算加权求和并激活函数输出新特征图谱。随着层数加深,所学到的空间关系也更加复杂抽象。 ```python import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential() model.add(layers.Conv1D(filters=32, kernel_size=4, activation='relu', input_shape=(sequence_length, n_features))) model.add(layers.MaxPooling1D(pool_size=2)) model.add(layers.Flatten()) model.add(layers.Dense(50, activation='relu')) model.add(layers.Dense(n_outputs)) # 输出维度取决于目标分类数或回归预测量 ``` #### 训练优化 定义损失函数与评估指标后即可开始迭代更新权重参数直至收敛。考虑到电力负荷曲线具有周期性和趋势性的特点,在选择合适的正则化项防止过拟合的同时也要注意调整批量大小(batch size),初始学习率等因素影响最终性能表现。 #### 测试验证 完成上述步骤后应当利用独立测试集中未见过的真实场景样本进行全面检验。通过对比估计结果同真实标签之间的差异程度衡量系统的准确性,并据此作出相应改进措施提升泛化能力。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值