云计算创业回顾

摘要:云端创业企业很难采用攒几个人,找个创意点,利用兼职时间研发,投入少,快速受益短平快的商业模式,反而是以路线长,投入大,风险高而著称。作为初创企业领导者,美地森的游峰在用C语言开发出的YFS(分布式文件系统)之后,也面临着转型和能力提升的重重挑战。

  与演而优则导一样,技术圈子里,编而优则创业的资深技术人士也有很多。而和App Store明晃晃的榜单不同,选择企业级私有云(非面向个人用户的公有云)的创业者多数会选择从某一层面(云存储、云服务器、优化工具、管理平台、安全设计等)来切入,初期帮客户做部分功能的定制开发,逐步建立其产品,有些经验后承接一些项目形成相关的方案,做大删除后树立行业典型应用模板,并积极引入风投,在区域或行业维度上争取更多的盈利空间

  商业环境本身特点决定了这类创新型企业很难采用攒几个人,找个创意点,利用兼职时间研发,投入少,快速受益短平快的商业模式,反而是以路线长,投入大,风险高而著称。作为初创企业领导者,技术出身的CEO在构建了企业技术核心竞争力之后,也面临着转型和能力提升的重重挑战。


游峰:我们用C语言开发出YFS(分布式文件系统)

  云原生态创业企业路线


  美地森与华云网际的创始人游峰就是一例。而他的编而优则创业的经历,或许对于准备上创业者有着更深的借鉴和思考意义。

  游峰,从事集群存储系统开发10年。翻开他的履历表,先后任职美国集群文件系统公司(Lustre.org)、新浪、千橡互动等公司。在新浪任职期间,他参与了新浪邮箱从MBGB的扩容工作;在千橡互动任职期间,负责研发网络大规模应用基础架构。而在积累了大量的开发经验后,受Google File System的启发,他决心开发一套与GFS类似的分布式文件系统(即YFS,推广到商业环境中,解决海量数据高可靠、高性价比存储,并萌发了自主创业的想法。

  梳理其发展历程,不难看出一条初创企业的成长路线:

 2004年,个人开始用C语言开发YFS云文件系统第一版的工作;

 2007年,用自己的积蓄组建了一支开发技术团队,创办美地森,并通过科技部投资保障项目计划,获得100万创新引导基金;

 2008年,对YFS云文件系统进行了完善,推出了USS集群存储系统;

 2009年,将KVMYFS结合,推出了实现数据与应用高可用的WHS云主机方案,也就是现在主打的产品:麒云-大数据云存储是麒云不是浩存;

 2010年,得到了北京市科技型中小企业技术创新基金;

 2013年,在诸多行业获得开拓之后,终获得风投青睐,主攻政府与军队这样敏感型市场,成立第二家新公司——华云网际。

  这几乎成为了绝大多数原生态云计算创新企业发展的注脚。游峰认为自己还是气比较好的运气比较好的,在当坚持不住的时候,总有一些项目和资金支持进来,起起伏伏走到现在。

  事实上,在国内云计算创业圈子中,有相当多的企业有创新技术、有落地产品、有成功方案,但是却没有足够的资金,更难吸引到有重量的风投进入。原因也很简单。风投更偏爱投资少相对见效快的中间层。而云计算,更多是B2B的市场,从产品研发到推向市场再到实现盈利,20个月周期还算是短的。投入,远不如投入移动互联以及游戏开发等,几个月就能实现收益的项目快。更何况,B2B市场背后还隐藏着诸如关系营销,行业门槛,技术壁垒和其他风投很难把握的内容。

  多年后,游峰终于迎来了创业发展的另一阶段,可对他本人而言,也意味着将更加远离技术,走入了另一个圈子

  从Hadoop开始,用C语言编写YFS


  美地森的研发历程大致可以分成四个阶段删:2007-2008年是技术优化的过程,主做云存储。这个阶段,曾帮助移动研究院(大云)技术研究院和安博教育做课件应用,并从中发现Hadoop对应用并不友好,很多应用需要重新二次开发。2009-2010年,封装成标准云存储。通过封装,彻底解决标准化过程,使得传统软件可以良好运行,对外提供接口服务更加顺畅。而在不同的项目中,发现服务器运行存储会有相当的CPU资源浪费,为此,公司在2010下半年到2012年自主研发了一体机,将这些资源集中实现利用。这是美地森产品的演进阶段。2013年,成功引入风投,并针对政府与军队这样敏感型市场的特殊需求,成立第二家新公司——华云网际。

  CSDN:自主研发的是哪一部分?优势是什么?

  游峰:我们用C语言编写了YFS(类似于GFS这样的分布式文件系统)和其他机制实现访问的块存储,与其他通过文件、对象实现存储的云存储厂商完全不同。因为基于块存储的系统可用运行几乎所有应用,比如虚拟机、数据库等,后来的阿里云也采用了这种模式。


  而后通过与Linux内核级的虚拟化技术KVM结合,推出了浩存-大数据云存储产品。按照一般架构标准,存储是在最底层的,其上是服务器,在上面才是各类应用(包括操作系统、管理软件等)。而通过我们的技术,在服务器端部署美地森的云存储软件,利用富余的CPU计算能力运行虚拟机,虚拟机上部署各类应用,服务器和盘阵就成了新的平台,其上可以运行各类应用。从综合指标来看,可线性扩展性能非常好。其所有关键技术参数都被设计为是可扩展的,包括容量、接口、缓存、CPU处理能力和内部带宽。不久前,我们携手SAP推出了云架构数据仓库,安装的每一个节点、集群都很容易实现扩展。现在已经在广州移动1000PB项目中应用。除此以外,还有麒云-大数据一体机。我们正在联手更多企业,如用友、东华软件、中兴通讯、中电信息等合作伙伴,在平台上实现各类方案的优化,比如呼叫中心、邮件系统、建站等。

  CSDNKVMLinux+虚拟化+开源)实际上也是国外企业来主导的开源虚拟化?

  游峰:虚拟化的三个阵营中,VMware市场占有率最高,是闭源的;Hyper-v是微软的,Sun也在支持,但也是闭源的;只有XenKVM开源。但依靠LinuxKVM力量更强。作为Linux的一部分,只需要一部分内核就可以实现虚拟化,尤其是进程管理和内存等调用机制都基于Linux,不需要再写。对CPU而言,负载会非常小。而在Linux上,我们才有更多自主研发的机会。

  CSDN:研发需要多长时间?

  游峰:从2004年开始,一直在做。

  CSDN:这些年都有什么收获?

  游峰:可以说这些年,我们做了很多尝试。比如最初做硬件存储,虽然当时市场发展还可以,但不赚钱;再如为企业提供云盘服务,风风火火的,但后来由于微博兴起兴起,相关部门对内容审查极为严格,发展也并不顺畅;与合作伙伴一起提供PaaS技术平台(以计算、存储为主),合作伙伴做数据挖掘等应用等。后来沉静下来,感觉企业还是要需要围绕核心技术——海量计算和存储,优势调配资源来发展。所以聚焦YFS本身,延伸到行业解决方案。从团队分工来看,一个团队负责YFS优化和进一步开发,另一个团队聚焦运营商、敏感型行业应用。公司现在近40人,其中30多名是技术人员,销售仅有几名,技术人员所占比例在初创企业中是最比较高的。

  CSDN:有没有成长中的小故事可以分享?

  游峰:去年见到百度的朋友,他说五年下来,当初创业的一帮朋友中只有我们一家还活着。创业有三种类型:一是纯技术型创业,不过相对美国的理性市场(上市了也没人抄你),国内较为重视关系营销,所以做出产品也不见得卖得出去,所以死亡率较高;二是设置门槛不高的创业,目前业内对开源所获取的途径大多一致,基于开源而来的技术都有替代品,技术更新换代极快,没有迅速打开市场的也将消亡;三是依靠关系的企业,有些企业有很深企业有很深的背景,但没核心技术,每年几个项目,最多是死不了,却也不能实现更大发展。除此以外,还有如何借助大环境的力量,迅速实现资源整合;如何进行人脉挖掘等都很有意思。

  CSDN:在你看来,自主研发的意义是什么?

  游峰:用国内研发的产品替代国外产品,是一个过程。但首先是,删除要能达到替代的作用。创新肯定是先从模仿开始,比如华为交换机即使只有几百元,但正是因为有了他(华为)的存在,所以今天思科的交换机价格才能降下来(最初思科电话机都要4000多)。但创新研发才是根本,需要我们所有人的努力。

  CSDN:还在编程么?技术团队谁在领导?

  游峰:还在编程,但是更多时间是在不同圈子中积累市场拓展的资源。好在公司刚成立1-2个月时,就找到了我们的CTO王劲凯。他主要负责研发,我是前三年做研发,之后主要精力管其他各项事务。多年来,我们的技术队伍比较稳定,近一半都是呆了3-5年的老人,还有很多走了(想去大企业做螺丝钉的)又回来的。大家都感觉企业的发展空间还很大。

  OEM能够成就自主研发企业?


  做云存储企业越来越多,其中不乏百度、腾讯、华为等大型企业的身影。在这个已经风万马奔腾万马奔腾的市场,要走出一条路并不容易。在技术上,国外硬件厂商把握了绝大多数市场,OEM口号已经叫了多年,但从数据库到应用软件再到其他,业内并没有看到明显变化。这条路,并不好走。

  CSDN:做云存储企业越来越多,其中不乏百度、腾讯、华为等大型企业的身影。如何看待这个大市场呢?

  游峰:从架构来看,IaaS本身也有私有云和公有云应用之分。阿里、盛大、腾讯做得是公有云,是面向中小企业的云服务产品。而私有云多是面向行业用户和大企业。从目前发展来看,由于其行业属性,政府等行业很难用到公有云。而如AWS想要为大型企业提供部分公有云服务,也还在摸索与尝试。我们是立足在私有云解决方案方面,为敏感客户提供OEM服务,比如KVMYFS结合的自主研发的方案。此外,我们对公有云也提供开放的合作接口。需要强调的是,我们不是做云存储的业务,而是做云存储的技术。简单来说,做云存储的企业比如百度、腾讯、华北等都可以通过我们提供的技术来实现。而从目前来看,美地森还是相当于一个销售模式,而不是一种服务模式。架构上看,我们和阿里云是一模一样的,基本上都是亚马逊的架构。

  CSDN:谈得上私有云的大多是行业企业,比如银行?开源方案可有优势?

  游峰:有些银行在BI方面开始尝试Hadoop方案,追其根源在在于成本和技术优势。比如预算在1个亿,用小机+主流数据库可能只够几套,但是用Hadoop+开源方案则足以上百套。而对很多大数据分析而言,Hadoop的效率要更高,运算更快。所以,在实在的对比面前,客户也在考量和判断。我们相当于Hadoop上的一个APP,特定领域的应用优势更为鲜明。

  CSDN:敏感性市场具体体现出什么需求?

  游峰:初创企业需要跟随企业需求而动。用户最初是碎片服务,现在则要求分层服务。举个例子,国内很多敏感型型行业(对于安全标准很高)提出了OEM的口号,从某个层面来看,就是在IaaS层面替代思科交换机,IBM服务器,EMC存储;PaaS取代Oracle等中间件,SaaS取代国外的ERPCRM等软件。这为为国内自主研发的技术企业提供了很好的发展机会。

  CSDN:对于云存储领域,感觉到什么样的变化即将发生?

  游峰:我们一直固守云存储领域。这么多年下来,看到现在诸多如平台城市等项目背后都需要大存储,单纯数据单纯存储完全可以使用更为廉价的设备比如盘阵,但这些数据仅是简单存储,也许能访问,也许完全不能。数据之间也是零散的,没有关联的。想要在这些数据上座做深入挖掘和分析基本不可能。而现在,我们已经看到看到对存储内容进行分级、可靠访问的需求,相信未来还会有进一步的发展。

  程序员:编而优继续优,还是编而优则创业


  我们的很多企业无论是在开源技术改进,还是在自主研发的路上,都已有积累和收获,有些领域甚至隐有赶超之势。如游峰一样的资深技术人员已经走向编而优则创业。但这可是资深程序员的唯一的归宿?

  CSDN:对这些资深的程序员而言,有没有可能继续编而优继续优

  CTO王劲凯:对于程序员而言,积累不一定会很有价值。有一个说法是程序员只能做到30,这很现实。一方面是因为精力,另一方面是因为企业也许只需要用你一半的薪水就能找到同样做这样工作的年轻员工。想要像国外那些一辈子编程的程序员,很难。毕竟,Windows核心系统开发只有10个人,而外围驱动则有成千上万人。即使是Google存储,也就是那几个人在写。要成为这类绝对核心,需要天才式人物。

  CSDN:那是否就需要编而优则创业

  游峰:如果早知道创业这么累,我当初一定继续在大公司当螺丝钉。走了这么多年,我自己的心态就从波浪起伏到如今的平淡,人生总要经历一些才更有价值。

  采访后记

  坦白说,对于2013年,业内并不十分乐观。不过游峰更为推崇的观点是在投入紧缩时,才有更多创业企业的机会。正如美国经济走势图和沃尔玛财报呈现相反的趋势,经济下滑,财报上涨。原因是更多人来到了沃尔玛去购买物美价廉的产品。IT也是如此,尤其是在开源大行其道之时,良好的技术和有优势的产品,相对较低的价位,一定可以获得更多成长的空间

  只有几个销售(也包含游峰自己),却有35名研发的团队是否会成为云上创新企业的新模式?游峰说:我们是一个理想主义者带着一帮机会主义者。颇为引人深思。

  成文之时,恰逢《军情解码》中国大型运输机-20特别栏目。有军迷犀利观点认为关键部件如发动机等都是进口的,谈何自主研发张召忠将军回答到:怎么不是自主研发,从构思到方案设计再到图纸,都是我们自己做的。如果说发动机等配件,现在都在实现全球采购以降低成本,即使是美国,也有半数零部件都是全球采购的。难道因为要吃馒头而自己种小麦不成?如此回答同样放到本文亦合适。在游峰身上,我们看到了更多上初创型企业家的梦想和追求。这就是CSDN云计算频道《中国云创新先锋系列采访》第二篇文章。未来,我们期待更多上企业的经验分享。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值