Import Error:Jupyter Notebook 中无法运行虚拟环境(pytorch、tensorflow)

本文详细记录了解决在Anaconda环境下,使用JupyterNotebook时遇到的与PyTorch环境兼容性问题的全过程。通过安装必要的软件包和调整虚拟环境设置,最终实现了在特定环境中顺利运行JupyterNotebook并导入PyTorch模块。
摘要由CSDN通过智能技术生成

解决步骤:

  1. 终端Anaconda Prompt,管理员权限运行。
  2. conda install nb_conda
  3. conda install ipykernel
  4. conda activate torch
  5. 启动:jupyter notebook D:\....\JupyterNotebook_learn
  6. 还是失败,原因:torch环境下没有安装jupyter notebook。解决方法:打开anaconda navigator.
  7. 观察到 torch 环境下没有安装jupyter notebook,点击install 安装后,用步骤5重新启动即可。
  8. 重新启动后,torch环境下打开一个notebook,import torch,成功。

步骤的图示过程:

1.2.3.4.

5.观察到此时多了两个虚拟环境:root和tensorflow2.,但还是没有torch环境。

root 环境下创建一个notebook,看是否可以切换环境,发现不行。

6. 7. 观察到base 和 tensorflow2 环境下都安装了jupyter notebook,而 tensorflow 和 torch 环境下没有安装,点击install安装即可。

如下是 tensorflow 和 torch 环境下安装好的(顺手安装了ipython)。

8. 打开notebook,torch环境下新建,import torch 测试,没有出错,成功。

 

 

 

参考:https://blog.csdn.net/weixin_41899102/article/details/104123957

### 解决方案概述 在 Jupyter Notebook 中使用 PyTorch 时可能会遇到多种错误,这些错误通常涉及环境配置、依赖项冲突或内核初始化失败等问题。以下是针对常见问题的具体解决方案。 --- #### 错误一:`could not get source code` 此错误通常是由于 `PyInstaller` 打包过程中无法获取某些函数的源码引起的[^1]。然而,在 Jupyter Notebook 的环境中运行 PyTorch 脚本时也可能出现类似的异常行为。这可能是因为: - **原因分析** - 使用了未完全兼容的库版本组合。 - 环境中的某些模块被缓存或损坏。 - **解决方法** 清理并重新创建 Conda 虚拟环境以确保一致性: ```bash conda remove --name your_env_name --all conda create --name new_env_name python=3.7 conda activate new_env_name ``` 配置好基础环境后,按照推荐的方式安装 PyTorch 和其他必要组件: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge pip install jupyter notebook ``` --- #### 错误二:Jupyter Notebook 连接不上内核 如果 Jupyter Notebook 无法正常加载内核,则可能是以下原因之一引起的问题[^2]: - **原因分析** - 当前激活的 Conda 环境未正确注册到 Jupyter 内核列表中。 - 存在多个不同版本的 Python 或者路径混乱的情况。 - **解决方法** 将当前 Conda 环境添加至 Jupyter 可用内核之中: ```bash ipython kernel install --user --name=myenv ``` 如果上述命令执行失败或者提示缺少 IPykernel 模块,请先通过 Pip 安装该工具: ```bash pip install ipykernel ``` --- #### 错误三:`AttributeError: 'IOLoop' object has no attribute 'initialized'` 这种类型的错误一般发生在 Tornado 库的不同版本之间存在不兼容性的时候。具体表现为尝试启动 Jupyter Notebook 后抛出了此类异常。 - **解决办法** 升级或降级 Tornado 至适合当前系统的稳定版次号: ```bash pip uninstall tornado pip install tornado==5.1.1 ``` --- #### 综合建议 为了减少潜在的风险因素以及提高开发效率,可以遵循如下最佳实践来构建基于 Anaconda 的机器学习工作流[^3]: 1. 始终单独为每一个项目建立独立的新虚拟环境; 2. 明确指定所需软件及其确切版本号以便于重现相同条件下的实验成果; 3. 利用官方文档指导完成复杂框架(如 TensorFlow/PyTorch)部署流程操作指南说明文件链接地址; --- ```python import torch print(torch.__version__) if torch.cuda.is_available(): print('CUDA is available') else: print('No CUDA detected.') ``` 以上代码片段可用于验证 GPU 加速功能是否成功启用。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值