深度学习深度学习(一)开篇

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wwwlgy/article/details/79209820

    深度学习“深度学习”!

    记得9年前写的一篇博客,十年的程序员,一晃眼,差不多10年又快到了。

    这一轮的人工智能,深度学习,他是我见到的一个非常特殊的编程方式:用数据编程。是的,他绝对不像其他的编程语言,是完全一个崭新的天地,掌握她,绝对会带来惊喜--你会发现以前感觉超级难的东西会忽然“哇,这个功能也能实现!”

     开这个专栏有两个目的:

      1. 我不是专家,在AI领域,我也是学生,这个博客一定程度上,是我的笔记,注意,是笔记,学到哪,记到哪。

      2. 这轮人工智能的概念已经随着“阿法狗”吹的遍地野草了,甚至考研的作文题都开始围绕着人与人工智能展开。创业大潮中,更多的人叫着喊着人工智能,机器生成云云。但,这轮AI到底能做什么呢?市面上很多充满各种鸡汤类的书和报道,吹嘘着憧憬着人工智能,将来无所不能,甚至还有可能毁灭人类。但是究竟能做啥?我个人觉得,对于这些创业人来说,还是别看以及少看这些鸡汤类的文章,扎扎实实的了解一下吧,因为这轮的人工智能,他是脱离我们的经验常识的,并非是是报道上说的无所不能,他也有很大局限。所以我的第二个目的也是希望能给这些人普及一下,人工智能到底能做什么。

    门槛也是有的,之所以是数据编程,那么重点是原理性的东西啦,在看这个专栏前,简单的数学基础还是要的,至少:

   《高等数学》掌握里头的导数和微分

   《线性代数》矢量,矩阵运算

   《概率论》通篇,但这个只是建议,不是必须

    直接购买大学课本吧,课本都很便宜。

    我理解的深度学习,实际有几层,如下图:

    

    神经网络是基础,其他网络都是在这个基础上生成的,RNN擅长用于处理文字类的识别。而CNN用于图形类的处理,而GAN网络最近几年才出现,可以进行生成创作类的应用场景。

     当然,人工智能远不止这些,先定个小目标吧,掌握这几个网络吧。




展开阅读全文

没有更多推荐了,返回首页