Grbl学习(7)--重要算法(2)

  上一篇结束了对重要源码的介绍,本篇将延续第三篇对重要算法的介绍,围绕圆弧插补算法展开学习


圆弧插补是 CNC 系统中处理曲线运动的基础

   圆弧插补是 CNC 系统中用于生成圆弧路径的算法。它的核心任务是将圆弧轨迹分解为一系列小的直线段,驱动步进电机沿曲线运动,从而实现加工圆形、弧形或螺旋路径。Grbl 的圆弧插补算法运行在资源受限的微控制器(如 Arduino 的 ATmega328P)上,需兼顾精度、实时性和计算效率。其主要作用包括:

1.平滑曲线运动:生成圆形、弧形或螺旋路径,适用于雕刻、切割等场景。

2.高精度加工:确保工具路径与设计一致,减少偏差。

3.复杂加工支持:实现平面圆弧(XY、XZ、YZ 平面)和螺旋插补(如螺纹加工)。

4.嵌入式优化:在资源受限的微控制器(如 Arduino 的 ATmega328P)上高效运行。

而圆弧插补算法一般由数字积分法实现


数字积分法

核心优势:

  数字积分法(DDA)是一种基于增量计算的算法,通过递推生成圆弧上的离散点,模拟“积分”过程。相比直接计算每个点的三角函数,DDA 使用递推公式大幅降低计算量,特别适合 Grbl 这样的嵌入式系统。其优势在于:

  • 高效性:减少昂贵的sin和cos调用。
  • 实时性:适配 CNC 加工的高频中断要求。
  • 精度可控:通过分段长度平衡平滑度和性能。 

原理:

数字积分法将圆弧参数化为角度θ,并通过递推计算坐标点。圆弧的数学表达式为:

其核心思想是:

1.将圆弧按角度增量 Δθ分段。

2.使用三角函数加法公式递推计算 cos⁡(θi+1)和 sin⁡(θi+1),避免重复调用三角函数。

3.在实时中断中生成离散点,驱动步进电机。

实现步骤:

1. 初始化参数

2. 分段计算

3. 递推生成点坐标

4.以下是数字积分法在圆弧插补中的伪代码,展示核心逻辑:

void dda_arc(float xs, float ys, float xe, float ye, float I, float J, bool clockwise) {
  // 计算圆心和半径
  float xc = xs + I;
  float yc = ys + J;
  float R = sqrt(I*I + J*J);

  // 计算起始角和终止角
  float theta_start = atan2(ys - yc, xs - xc);
  float theta_end = atan2(ye - yc, xe - xc);
  float theta = angle_diff(theta_start, theta_end, clockwise);

  // 计算分段数
  float segment_length = ARC_TOLERANCE; // 每段长度(如 0.1 mm)
  int N = ceil(fabs(theta * R / segment_length));
  float delta_theta = theta / N;

  // 初始化三角函数
  float cos_t = cos(theta_start);
  float sin_t = sin(theta_start);
  float cos_dt = cos(delta_theta);
  float sin_dt = sin(delta_theta);

  // 递推生成点
  for (int i = 0; i <= N; i++) {
    // 计算当前点
    float x = xc + R * cos_t;
    float y = yc + R * sin_t;

    // 送入运动规划器
    plan_buffer_line(x, y, ...);

    // 递推更新三角函数
    float new_cos_t = cos_t * cos_dt - sin_t * sin_dt;
    float new_sin_t = sin_t * cos_dt + cos_t * sin_dt;
    cos_t = new_cos_t;
    sin_t = new_sin_t;
  }
}

  数字积分法通过角度增量和三角函数递推,高效实现了 Grbl 圆弧插补的核心功能。其在嵌入式系统中的优化设计,完美平衡了精度、实时性和计算效率,特别适合中小型 CNC 设备。无论是调试 Grbl 固件、优化加工工艺,还是开发自定义插补算法,理解数字积分法的原理和实现都至关重要。
  未来,若需处理更复杂的 3D 曲线(如 NURBS)或更高精度,可考虑升级到更强大的控制器。但对于 DIY 和小型加工场景,Grbl 的数字积分法已足够强大且易用。


笔者自己学习完该算法的总结

  学完圆弧插补算法,感觉就像是学会了怎么用小步子画出一个圆弧。简单来说,这个算法就是帮 CNC 机器(比如雕刻机、激光切割机)沿着圆弧轨迹一步步走,而不是直接跳过去。整个过程就像小时候用圆规画圆,但机器只能走直线,所以得把圆分成很多小段直线走。

  一开始,算法得知道圆的起点、终点和圆心在哪,还要算出半径和需要转的角度。接着,它会把这个圆弧分成很多小份,每一份就是一个小直线段,机器就能沿着这些小段一步步走,看起来就像画了个圆。数字积分法(DDA)特别聪明,它不用每次都去算复杂的三角函数,而是用一个“递推”的办法,像滚雪球一样,算完一个点就用这个点推下一个点,省时省力,特别适合 Grbl 这种跑在小微控制器上的系统。

  该算法既要保证路径够圆滑,又得在机器有限的算力下跑得快,还得实时输出指令让电机动起来。就像咱们骑自行车下坡,既要稳又要快,还得看路况调整速度。Grbl 里还加了些优化,比如控制小段的长度、预先算好一些值,尽量让计算简单又高效。


下一篇将详细介绍剩余重要算法

以上便是本篇的全部内容啦!

欢迎大家一起交流学习!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值