上一篇结束了对重要源码的介绍,本篇将延续第三篇对重要算法的介绍,围绕圆弧插补算法展开学习
圆弧插补是 CNC 系统中处理曲线运动的基础
圆弧插补是 CNC 系统中用于生成圆弧路径的算法。它的核心任务是将圆弧轨迹分解为一系列小的直线段,驱动步进电机沿曲线运动,从而实现加工圆形、弧形或螺旋路径。Grbl 的圆弧插补算法运行在资源受限的微控制器(如 Arduino 的 ATmega328P)上,需兼顾精度、实时性和计算效率。其主要作用包括:
1.平滑曲线运动:生成圆形、弧形或螺旋路径,适用于雕刻、切割等场景。
2.高精度加工:确保工具路径与设计一致,减少偏差。
3.复杂加工支持:实现平面圆弧(XY、XZ、YZ 平面)和螺旋插补(如螺纹加工)。
4.嵌入式优化:在资源受限的微控制器(如 Arduino 的 ATmega328P)上高效运行。
而圆弧插补算法一般由数字积分法实现
数字积分法
核心优势:
数字积分法(DDA)是一种基于增量计算的算法,通过递推生成圆弧上的离散点,模拟“积分”过程。相比直接计算每个点的三角函数,DDA 使用递推公式大幅降低计算量,特别适合 Grbl 这样的嵌入式系统。其优势在于:
- 高效性:减少昂贵的sin和cos调用。
- 实时性:适配 CNC 加工的高频中断要求。
-
精度可控:通过分段长度平衡平滑度和性能。
原理:
数字积分法将圆弧参数化为角度θ,并通过递推计算坐标点。圆弧的数学表达式为:
其核心思想是:
1.将圆弧按角度增量 Δθ分段。
2.使用三角函数加法公式递推计算 cos(θi+1)和 sin(θi+1),避免重复调用三角函数。
3.在实时中断中生成离散点,驱动步进电机。
实现步骤:
1. 初始化参数
2. 分段计算
3. 递推生成点坐标
4.以下是数字积分法在圆弧插补中的伪代码,展示核心逻辑:
void dda_arc(float xs, float ys, float xe, float ye, float I, float J, bool clockwise) {
// 计算圆心和半径
float xc = xs + I;
float yc = ys + J;
float R = sqrt(I*I + J*J);
// 计算起始角和终止角
float theta_start = atan2(ys - yc, xs - xc);
float theta_end = atan2(ye - yc, xe - xc);
float theta = angle_diff(theta_start, theta_end, clockwise);
// 计算分段数
float segment_length = ARC_TOLERANCE; // 每段长度(如 0.1 mm)
int N = ceil(fabs(theta * R / segment_length));
float delta_theta = theta / N;
// 初始化三角函数
float cos_t = cos(theta_start);
float sin_t = sin(theta_start);
float cos_dt = cos(delta_theta);
float sin_dt = sin(delta_theta);
// 递推生成点
for (int i = 0; i <= N; i++) {
// 计算当前点
float x = xc + R * cos_t;
float y = yc + R * sin_t;
// 送入运动规划器
plan_buffer_line(x, y, ...);
// 递推更新三角函数
float new_cos_t = cos_t * cos_dt - sin_t * sin_dt;
float new_sin_t = sin_t * cos_dt + cos_t * sin_dt;
cos_t = new_cos_t;
sin_t = new_sin_t;
}
}
数字积分法通过角度增量和三角函数递推,高效实现了 Grbl 圆弧插补的核心功能。其在嵌入式系统中的优化设计,完美平衡了精度、实时性和计算效率,特别适合中小型 CNC 设备。无论是调试 Grbl 固件、优化加工工艺,还是开发自定义插补算法,理解数字积分法的原理和实现都至关重要。
未来,若需处理更复杂的 3D 曲线(如 NURBS)或更高精度,可考虑升级到更强大的控制器。但对于 DIY 和小型加工场景,Grbl 的数字积分法已足够强大且易用。
笔者自己学习完该算法的总结
学完圆弧插补算法,感觉就像是学会了怎么用小步子画出一个圆弧。简单来说,这个算法就是帮 CNC 机器(比如雕刻机、激光切割机)沿着圆弧轨迹一步步走,而不是直接跳过去。整个过程就像小时候用圆规画圆,但机器只能走直线,所以得把圆分成很多小段直线走。
一开始,算法得知道圆的起点、终点和圆心在哪,还要算出半径和需要转的角度。接着,它会把这个圆弧分成很多小份,每一份就是一个小直线段,机器就能沿着这些小段一步步走,看起来就像画了个圆。数字积分法(DDA)特别聪明,它不用每次都去算复杂的三角函数,而是用一个“递推”的办法,像滚雪球一样,算完一个点就用这个点推下一个点,省时省力,特别适合 Grbl 这种跑在小微控制器上的系统。
该算法既要保证路径够圆滑,又得在机器有限的算力下跑得快,还得实时输出指令让电机动起来。就像咱们骑自行车下坡,既要稳又要快,还得看路况调整速度。Grbl 里还加了些优化,比如控制小段的长度、预先算好一些值,尽量让计算简单又高效。
下一篇将详细介绍剩余重要算法
以上便是本篇的全部内容啦!
欢迎大家一起交流学习!