xxaxtt
码龄15年
关注
提问 私信
  • 博客:93,555
    动态:4,385
    97,940
    总访问量
  • 105
    原创
  • 1,901,598
    排名
  • 8
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2009-12-26
博客简介:

wxgaws的博客

查看详细资料
个人成就
  • 获得20次点赞
  • 内容获得20次评论
  • 获得59次收藏
创作历程
  • 4篇
    2022年
  • 32篇
    2021年
  • 69篇
    2020年
成就勋章
TA的专栏
  • python
    5篇
  • pytorch
    1篇
  • 小熊tensorflow笔记
    32篇
  • leetcode
    22篇
  • java
    9篇
  • 推荐算法
    8篇
  • 算法
    7篇
  • 笔记
    22篇
兴趣领域 设置
  • 人工智能
    深度学习自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

switch MLPmixer会非常有效

发布动态 2022.11.04

稀疏网络和稀疏训练大有前途前途。一个样本一般只会涉及少量参数,更新的时候也只需要更新少量参数。不但能节省训练参数,预测时间也能大大减少。这也和人脑的结构较一致。

发布动态 2022.10.25

谷歌的relu2激活函数真的很好。相比relu,relu2是处处可导的,而且在大于1的区域,导数大于relu的,更有利于快速收敛。相比sigmoid,relu2没有梯度消失的问题。简单又完美!

发布动态 2022.10.24

更新梯度的时候大部分梯度是没有必要更新的,只有少数梯度值得更新。梯度更新本来就该是稀疏的,每次只更新少量梯度,可以极大的提高模型训练效率。

发布动态 2022.10.23

婴儿总是对新鲜的事物有兴趣。今天要这个玩具,明天就腻了,明天对抽屉感兴趣,后天又对垃圾桶感兴趣了,总是在不断学习新东西。

发布动态 2022.10.23

婴儿总是对新鲜的事物有兴趣。今天要这个玩具,明天就腻了,明天对抽屉感兴趣,后天又对垃圾桶感兴趣了,总是在不断学习新东西。

发布动态 2022.10.23

人类学习新知识的时候,总从易到难。比如学单词,需要对新单词单独花时间来记忆,才能将新单词记住学会。训练模型时也应该这样,对困难样本重点学习。

发布动态 2022.09.29

纯MLP模型,如何加入多头注意力?不同头学习不同的模式,有些关注局部,有些关注整体。将transformer中两层全部换成MSA,效果如何?

发布动态 2022.09.22

普金的漫画像,人类也能一眼识别。对图像进行一定的拉伸,旋转,扭曲后,人还能识别出来。扭曲操作似乎目前还没有在cv中使用。

发布动态 2022.09.21

Simsiam目标是学习不变量,用两个异构模型来学习,效果可能更好

发布动态 2022.09.21

simsiam模型确实很巧妙。样本和变形后的样本,是本质相似的,能够学到不变量。

发布动态 2022.09.15

召回相关性差怎么办?召回的训练数据一般只有点击正样本,训练完后recall指标还不错,但是和历史数据的相关性较差。要提高相关性,需要加入文本信息。相关性正负样本怎么办?利用自监督和对比学习来构造正负样本,如果还嫌样本质量不够,可以加入监督样本,例如搜索场景的样本;也可加入对抗样本,这些都是样本构造的方式。

发布动态 2022.09.07

如何给行为少的用户做好推荐?可以参考其他相似用户的行为。例如用户A对买完手机后还会买什么?对用户A缺少历史数据参考。如果观察更多用户呢?就会发现有些用户后续购买了手机套,贴膜,耳机,充电线等。那么我们可以给用户推荐这些产品。

发布动态 2022.09.05

推荐结果重复,是效果差一大原因,如何召回不重复结果?

发布动态 2022.09.03

深网络有什么好处?底层处理低阶信息,高层处理抽像信息,抽象信息更容易迁移,做到全局共享。如何用乾网络实现抽象信息共享?一种可行的方法是,做一个全局分类模块,浅网络通过分类模块实现信息共享。

发布动态 2022.09.01

transformer和SENET怎么结合?transformer根据两两相关性调整权重,SENET根据特征自身调整权重,两者结合可以同时考虑一阶和二阶权重。

发布动态 2022.08.31

图像对机器翻译会很有用。苹果的图像对各国人都是一样的,但是苹果的文字和发音对各国有很大差异。不同的语言可以通过图像自动联系起来,这样可以极大的减少标注样本的需求,建立一个统一的图像文字模型。

发布动态 2022.08.29

普通的dropout方法,所有的节点按照固定概率drop。在文本和图像中,显然不同的部分的重要性不同。丢掉重要部分会严重损坏信息,丢掉不重要的部分影响则很小。dropout按照重要性来丢很重要。

发布动态 2022.08.28

推荐模型中,对用户和商品分成cluster很重要,这样用户之间可以通过cluster相互联系,从而进行知识的迁移

发布动态 2022.08.26

DIN模型有什么缺陷?用户买裙子参考她买过的裙子,这个可以处理。有些商品之间的关系比较隐秘。比如有些用户喜欢高端的产品,比如名牌的衣服,高端的手机,虽然是衣服和手机不相似,但是都是高端的,DIN似乎处理不了这种情况。协同信号在这种情况下似乎挺重要。

发布动态 2022.08.25
加载更多