【文章阅读】连续空间增量式RL(策略松弛和加权权重)

本文提出一种增量式强化学习方法,针对连续空间动态环境,通过策略松弛鼓励探索,结合重要性加权加速策略适应。实验在2-D导航和MuJoCo机器人任务中验证了其优于基线的适应速度。
摘要由CSDN通过智能技术生成

Brief

文章链接 paper
代码链接 code
这是一篇19年发表在 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (一区)的论文,作者来自南京大学。从标题可以看出文章研究的内容是连续空间的增量式强化学习,研究方法是***Policy Relaxation***和 Importance Weighting

Abstract

文章提出了一种系统的增量学习方法,用于动态环境中连续空间的强化学习。
目标:在环境发生变化时,将原来环境中已经学到的策略进行增量式调整到新的策略。
方式方法:为了提高对不断变化的环境的适应性,提出了结合增量式学习过程的两步解决方案:策略松弛和重要性加权。

First:在初始学习阶段将行为策略放宽为随机策略,以鼓励在新环境中进行适当的探索。它缓解了新信息和现有知识之间的冲突,以便在长期内更好地适应。
Second:观察到获得更高回报的episodes更符合新的环境,因此包含更多的新信息。在参数更新的过程中,我们给包含更多新信息的learning episodes赋予更高的重要性权重,从而鼓励先前的最优策略更快的适应新环境中的新策略。

实验:通过对变结构连续控制任务的实验研究,验证了该方法对不同动态环境的适应速度快于baselines。

Introduction

第一段:

介绍了强化学习的大背景,定义,传统的RL算法,例如动态规划,蒙特卡洛方法,时间差分学习方法广泛应用于智能控制和工业应用dynamic programming,Monte Carlo methods,temporal difference learning。为了解决“curse of dimensionality”wei’shu维数灾难,函数近似技术,例如最小二乘策略迭代least-squares policy iteration,拟合Q-迭代fitted Q-iteration被用于连续空间的MDPs马尔可决策过程。结合深度学习的最近进展,学习特征表示使RL算法在超高危应用中具有实用性,例如Atari games [12], the game of Go [13],and robot locomotion [14].

第二段:

介绍传统RL设置中,任务固定,环境保持不变。然而,在实际应用中,环境是动态的,其中reward function,state transition function,或者state-ac

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值