理解 LSTM 网络

转自https://www.jianshu.com/p/9dc9f41f0b29 Recurrent Neural Networks 人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西...

2018-09-19 09:39:40

阅读数 60

评论数 0

c++中的引用

详见https://blog.csdn.net/xiao__tian__/article/details/51814617 C++中的引用: 引用引入了对象的一个同义词。定义引用的表示方法与定义指针相似,只是用&代替了*。引用(reference)是c++对c语言的重要...

2018-09-13 14:03:14

阅读数 39

评论数 0

c++中const的作用

转自https://blog.csdn.net/j8121/article/details/51926711 在C/C++开发中经常会用到const,这个修饰符。今天就讨论一下它的作用。 (1) const用于定义常量:const定义的常量编译器可以对其进行数据静态类型安全检查。这个是开发中经...

2018-09-13 13:50:49

阅读数 174

评论数 0

基于深度神经网络特征提取的文本无关的说话人识别

部分转自https://blog.csdn.net/monsieurliaxiamen/article/details/79638227 对文章“Deep neural network embeddings for text-independent speaker verification” 的...

2018-08-25 14:07:52

阅读数 289

评论数 0

WaveNet原理和代码分析

转自https://blog.csdn.net/zsssrs/article/details/79892523

2018-08-06 20:59:55

阅读数 437

评论数 2

深度学习入门论文(语音识别领域)

转自https://blog.csdn.net/youyuyixiu/article/details/53764218 介绍深度学习在语音识别领域应用的6篇入门论文: Deep neural networks for acoustic modeling in speech recognitio...

2018-07-29 18:47:37

阅读数 2453

评论数 0

声纹识别概念入门

转自https://blog.csdn.net/xmu_jupiter/article/details/47209961

2018-07-17 11:10:42

阅读数 569

评论数 0

深度学习AlexNet模型详细分析

转自https://blog.csdn.net/zyqdragon/article/details/72353420Alex在2012年提出的alexnet网络结构模型引爆了神经网络的应用热潮,并赢得了2012届图像识别大赛的冠军,使得CNN成为在图像分类上的核心算法模型。接下来本文对该网络配置结...

2018-07-11 10:45:03

阅读数 1503

评论数 0

new与malloc的区别

部分转自http://www.cnblogs.com/ywliao/articles/8116622.html 部分转自https://blog.csdn.net/nie19940803/article/details/76358673 属性 new/delete是C++关键字,需要编译器支...

2018-06-22 10:31:22

阅读数 79

评论数 0

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

转自https://blog.csdn.net/xianlingmao/article/details/7919597在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最...

2018-06-21 13:56:37

阅读数 40

评论数 0

支持向量机4—序列最小最优化算法

支持向量机的学习问题可以形式化为求解凸二次规划问题。这样的凸二次规划问题具有全局最优解,并且有许多最优化算法可以用于这一问题的求解。但是当训练样本容量很大时,这些算法往往变得非常低效,以致无法使用。所以学习一种快速实现算法——序列最小最优化(sequential minimal optimizat...

2018-06-21 13:51:29

阅读数 435

评论数 0

支持向量机3—非线性支持向量机与核函数

本节叙述非线性支持向量机,其主要特点是利用核技巧(kernel trick)。1、核技巧非线性分类问题是指通过利用非线性模型才能很好地进行分类的问题。非线性问题往往不好求解,所以希望能用解线性问题的方法解决这个问题,所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题。通过解变换后的线性问...

2018-06-21 09:50:38

阅读数 99

评论数 0

支持向量机2—线性支持向量机与软间隔最大化

线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的。因为这时上述方法中的不等式约束并不能都成立。这时就需要修改硬间隔最大化,使其成为软间隔最大化。假设给定一个特征空间上的训练数据集T={(x1,y1),(x2,y2),...,(xN,yN)},其中xi∈χ=Rn(R的n次方),yi∈...

2018-06-20 16:32:47

阅读数 66

评论数 0

支持向量机1—线性可分支持向量机与硬间隔最大化

支持向量机(support vector machine, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(conve...

2018-06-19 11:04:48

阅读数 403

评论数 0

蒙特卡罗 马尔科夫链 与Gibbs采样

        这几个概念看了挺多遍都还是含混不清,最近看了几篇博客,才算大致理解了一点点皮毛,所以来总结一下。MCMC概述        从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo Simulation,简称MC)和马尔科夫链(Markov Chain ,...

2018-06-15 11:16:38

阅读数 1402

评论数 1

LDA与PCA

主成分分析(PCA)原理总结http://www.cnblogs.com/pinard/p/6239403.html用scikit-learn学习主成分分析(PCA)http://www.cnblogs.com/pinard/p/6243025.html线性判别分析LDA原理总结http://ww...

2018-06-13 10:01:57

阅读数 86

评论数 0

常见损失函数

详见https://blog.csdn.net/weixin_37933986/article/details/68488339常见的损失函数通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。...

2018-06-06 10:36:07

阅读数 1075

评论数 0

Adaboost

AdaBoost原理详解详见https://www.cnblogs.com/ScorpioLu/p/8295990.html代码实战之AdaBoost详见https://www.cnblogs.com/ScorpioLu/p/8296561.html

2018-06-06 10:06:48

阅读数 51

评论数 0

GBDT

推荐GBDT树的深度:6;(横向比较:DecisionTree/RandomForest需要把树的深度调到15或更高)  以下摘自知乎上的一个问答(详见参考文献8),问题和回复都很好的阐述了这个参数设置的数学原理。  【问】xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?  ...

2018-06-04 11:43:40

阅读数 1212

评论数 0

putty使用python模块tkinter显示对话框出现_tkinter.TclError: no display name and no $DISPLAY environment variable

转自https://blog.csdn.net/snailNL/article/details/79170032问题描述:       putty不能显示对话框,出现错误提示:_tkinter.TclError: no display name and no $DISPLAY environmen...

2018-06-03 20:59:27

阅读数 861

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭