wxn704414736
码龄9年
关注
提问 私信
  • 博客:271,263
    271,263
    总访问量
  • 45
    原创
  • 413,314
    排名
  • 61
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2015-06-19
博客简介:

wxn704414736的博客

查看详细资料
个人成就
  • 获得145次点赞
  • 内容获得29次评论
  • 获得457次收藏
  • 代码片获得127次分享
创作历程
  • 2篇
    2021年
  • 73篇
    2018年
  • 27篇
    2017年
成就勋章
TA的专栏
  • spring
    1篇
  • java
  • c++
    60篇
  • 深度学习
    10篇
  • 算法
    7篇
  • 矩阵论
  • 机器学习
    23篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于BeanUtils.copyProperties的用法和优缺点

//得到TeacherForm TeacherForm teacherForm=(TeacherForm)form; //构造Teacher对象 Teacher teacher=new Teacher(); //赋值 BeanUtils.copyProperties(teacher,teacherForm); //持久化Teacher对象到数据库 HibernateDAO.save(teacher);  BeanUtils提供对Java反射和.
转载
发布博客 2021.07.07 ·
826 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Spring|@Autowired与new的区别

转自https://www.cnblogs.com/maikucha/p/10145169.html总结:@Autowired是从IOC容器中获取已经初始化的对象,此对象中@Autowired的属性也已经通过容器完成了注入,整个生命周期都交由容器管控。然而通过new出来的对象,生命周期不受容器管控,自然也无法完成属性的自动注入。...
转载
发布博客 2021.07.07 ·
308 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

理解 LSTM 网络

转自https://www.jianshu.com/p/9dc9f41f0b29Recurrent Neural Networks人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。传统的神经网络并不能做到这点,看起来也...
转载
发布博客 2018.09.19 ·
402 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

c++中的引用

详见https://blog.csdn.net/xiao__tian__/article/details/51814617C++中的引用:引用引入了对象的一个同义词。定义引用的表示方法与定义指针相似,只是用&代替了*。引用(reference)是c++对c语言的重要扩充。引用就是某一变量(目标)的一个别名,对引用的操作与对变量直接操作完全一样。其格式为:类型 &引用变量...
转载
发布博客 2018.09.13 ·
395 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

c++中const的作用

转自https://blog.csdn.net/j8121/article/details/51926711在C/C++开发中经常会用到const,这个修饰符。今天就讨论一下它的作用。(1) const用于定义常量:const定义的常量编译器可以对其进行数据静态类型安全检查。这个是开发中经常用到的const的最基本的作用。(2) const修饰函数形式参数:当输入参数为用户自定义类型和...
转载
发布博客 2018.09.13 ·
3474 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

基于深度神经网络特征提取的文本无关的说话人识别

部分转自https://blog.csdn.net/monsieurliaxiamen/article/details/79638227对文章“Deep neural network embeddings for text-independent speaker verification” 的解读。1. 概要  在实际应用中,往往被测试者或被验证者的语音长度相对较短,若使用传统的PLD...
转载
发布博客 2018.08.25 ·
1272 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

WaveNet原理和代码分析

转自https://blog.csdn.net/zsssrs/article/details/79892523
转载
发布博客 2018.08.06 ·
1928 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

深度学习入门论文(语音识别领域)

转自https://blog.csdn.net/youyuyixiu/article/details/53764218介绍深度学习在语音识别领域应用的6篇入门论文:Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups (2012年...
转载
发布博客 2018.07.29 ·
6567 阅读 ·
1 点赞 ·
1 评论 ·
31 收藏

声纹识别概念入门

转自https://blog.csdn.net/xmu_jupiter/article/details/47209961
转载
发布博客 2018.07.17 ·
1263 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

深度学习AlexNet模型详细分析

转自https://blog.csdn.net/zyqdragon/article/details/72353420Alex在2012年提出的alexnet网络结构模型引爆了神经网络的应用热潮,并赢得了2012届图像识别大赛的冠军,使得CNN成为在图像分类上的核心算法模型。接下来本文对该网络配置结构中各个层进行详细的解读(训练阶段):注:下述关于卷积核的尺寸来自于Alex在2012年发表的经典论文...
转载
发布博客 2018.07.11 ·
4542 阅读 ·
2 点赞 ·
0 评论 ·
17 收藏

new与malloc的区别

部分转自http://www.cnblogs.com/ywliao/articles/8116622.html部分转自https://blog.csdn.net/nie19940803/article/details/76358673属性new/delete是C++关键字,需要编译器支持。malloc/free是库函数,需要头文件支持。返回类型new操作符内存分配成功时,返回的...
转载
发布博客 2018.06.22 ·
227 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

转自https://blog.csdn.net/xianlingmao/article/details/7919597在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值;如果含有不等式约束,可以应用KKT条件去求取。当然,这两个方法求得的结果只是必要条件,只有当是凸...
转载
发布博客 2018.06.21 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

支持向量机4—序列最小最优化算法

支持向量机的学习问题可以形式化为求解凸二次规划问题。这样的凸二次规划问题具有全局最优解,并且有许多最优化算法可以用于这一问题的求解。但是当训练样本容量很大时,这些算法往往变得非常低效,以致无法使用。所以学习一种快速实现算法——序列最小最优化(sequential minimal optimization, SMO)算法,这个算法1988年由Platt提出。SMO算法是一种启发式算法,其基本思路是:...
原创
发布博客 2018.06.21 ·
964 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

支持向量机3—非线性支持向量机与核函数

本节叙述非线性支持向量机,其主要特点是利用核技巧(kernel trick)。1、核技巧非线性分类问题是指通过利用非线性模型才能很好地进行分类的问题。非线性问题往往不好求解,所以希望能用解线性问题的方法解决这个问题,所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题。通过解变换后的线性问题的方法求解原来的非线性问题。核函数的定义如下。设χ是输入空间(欧氏空间Rn的子集或离散集合),又H为...
原创
发布博客 2018.06.21 ·
1098 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

支持向量机2—线性支持向量机与软间隔最大化

线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的。因为这时上述方法中的不等式约束并不能都成立。这时就需要修改硬间隔最大化,使其成为软间隔最大化。假设给定一个特征空间上的训练数据集T={(x1,y1),(x2,y2),...,(xN,yN)},其中xi∈χ=Rn(R的n次方),yi∈γ={-1,+1},i=1,2,...,N, xi为第i个特征向量,yi为xi的类标记。再假设训练数据...
原创
发布博客 2018.06.20 ·
445 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

支持向量机1—线性可分支持向量机与硬间隔最大化

支持向量机(support vector machine, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题,也等价于正则化的合页损失函数的最小化问题。支持...
原创
发布博客 2018.06.19 ·
1549 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

蒙特卡罗 马尔科夫链 与Gibbs采样

        这几个概念看了挺多遍都还是含混不清,最近看了几篇博客,才算大致理解了一点点皮毛,所以来总结一下。MCMC概述        从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo Simulation,简称MC)和马尔科夫链(Markov Chain ,也简称MC)。要弄懂MCMC的原理我们首先得搞清楚蒙特卡罗方法和马尔科夫链的原理MCMC(一)蒙特卡罗...
转载
发布博客 2018.06.15 ·
2923 阅读 ·
6 点赞 ·
1 评论 ·
16 收藏

LDA与PCA

主成分分析(PCA)原理总结http://www.cnblogs.com/pinard/p/6239403.html用scikit-learn学习主成分分析(PCA)http://www.cnblogs.com/pinard/p/6243025.html线性判别分析LDA原理总结http://www.cnblogs.com/pinard/p/6244265.html用scikit-learn进行L...
转载
发布博客 2018.06.13 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

常见损失函数

详见https://blog.csdn.net/weixin_37933986/article/details/68488339常见的损失函数通常机器学习每一个算法中都会有一个目标函数,算法的求解过程是通过对这个目标函数优化的过程。在分类或者回归问题中,通常使用损失函数(代价函数)作为其目标函数。损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的算法使用的损...
转载
发布博客 2018.06.06 ·
1864 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Adaboost

AdaBoost原理详解详见https://www.cnblogs.com/ScorpioLu/p/8295990.html代码实战之AdaBoost详见https://www.cnblogs.com/ScorpioLu/p/8296561.html
转载
发布博客 2018.06.06 ·
170 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多