我要快、认真和坚守承诺!

I must be fast, serious and keep the promise!

Andrew Ng机器学习公开课(斯坦福)——1.学习动机与资料整理

师兄推荐学习机器学习首推课程是:网易的斯坦福大学机器学习公开课:点击打开链接

看了第一节后就止不住的兴奋,从NG一开始提到对机器学习的解释:
Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance onT ,as measured by P,improves with eaperience E.
给出任务T,让机器去做,给出一个评价P,从经验E进行学习
                                                                                                                                        ----Tom Mitchell(1998)
之后更欣赏他的授课风格:板书的认真、每提出一个模型都要说为什么以及与之前的对比、还有每讲完一个知识点都会问大家听懂没进行提问。最让我兴奋的就是他讲到他的学生做的几个项目,反正当时的我看到这些时,是这样的。下面就是我开始学习这门课的一些准备资料和对课上提到的一些感兴趣内容的搜索了解。

原始课程和课件,课后习题都在那里可以下载,我查找博友整理的笔记,觉的最详细的应该是http://www.cnblogs.com/fxjwind/category/315338.html,笔记基本按照原英文课件翻译,而且含有课堂上的理解。

有趣的项目
1.用单张二维图像重构三维模型。来自 Learning 3-D Scene Structure from a Single Still Image这篇论文。主要思想是:把二维图像的像素进行聚类算法,划分为很多具有相同属性的区域,然后通过结构区域预测它的三维位置和方向,这种关系通过马尔科夫随机性场模型训练得到。可以参考这篇博客http://blog.csdn.net/zouxy09/article/details/8083553
2.鸡尾酒舞会。通过无监督学习算法分离混合的音频
3.那一句简练的ICA算法代码。
在两组声音中将它们分开的程序代码,Octave/Matlab:[W,s,v]=svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');
4.强化学习中的飞机飞行决策,各式功能的机器人,以及网页爬虫(关于网页爬虫,在学习python的时候顺带练了下手,但现在还不知道这与机器学习有多大关系)

这些就是促使我学习机器学习的动力,多么美好的知识!
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wxr769066052/article/details/61432661
个人分类: MachineLeaning
上一篇图像增强--图像对比度、线性展宽、灰级窗、线性动态范围调整、直方图均衡化
下一篇计算机中缺失MSVCR110.dll,MSVCP120D.dll等问题解决
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭