wy的点滴

盛年不重来。

排序:
默认
按更新时间
按访问量

图论欧拉路径问题(单词接龙)

查看原文:点击打开链接 定义 欧拉问题分为欧拉路径以及欧拉回路。   欧拉路径,指在图中找得到一条路径,使得该路径对图的每一条边恰好访问一次。   欧拉回路,指在图中找得到一个圈,使得该圈恰好经过每一条边一次。 由上可见,路径与回路的区别仅在于起点与终点是否是同一个点。 ...

2016-12-22 14:21:28

阅读数:398

评论数:0

图论——寻找无向连通图割点算法

查看原文:http://www.wyblog.cn/2016/12/20/%e5%9b%be%e8%ae%ba-%e5%af%bb%e6%89%be%e6%97%a0%e7%9b%b8%e8%bf%9e%e9%80%9a%e5%9b%be%e5%89%b2%e7%82%b9%e7%ae%97%e6...

2016-12-20 20:51:03

阅读数:3243

评论数:0

最小生成树——Prim算法

查看原文:http://www.wyblog.cn/2016/12/14/%e6%9c%80%e5%b0%8f%e7%94%9f%e6%88%90%e6%a0%91-prim%e7%ae%97%e6%b3%95/一个无向图的最小生成树就是由该图的那些连接G的所有顶点的边构成的树,且其所有边权值之和...

2016-12-14 10:02:02

阅读数:295

评论数:0

带权路径最短——Dijkstra算法

查看原文:http://www.wyblog.cn/2016/12/09/%e5%b8%a6%e6%9d%83%e8%b7%af%e5%be%84%e6%9c%80%e7%9f%ad-dijkstra%e7%ae%97%e6%b3%95/Dijkstra算法是经典的求取带权最短路径的算法。 它采用...

2016-12-09 11:57:32

阅读数:405

评论数:0

图论无权路径算法实现

查看原文:http://www.wyblog.cn/2016/12/07/%e5%9b%be%e8%ae%ba%e6%97%a0%e6%9d%83%e8%b7%af%e5%be%84%e7%ae%97%e6%b3%95%e5%ae%9e%e7%8e%b0/算法思想参考《数据结构与算法分析》教材。 ...

2016-12-07 11:26:21

阅读数:302

评论数:0

用两个栈如何实现队列?

查看原文:http://www.wyblog.cn/2016/12/05/%e7%94%a8%e4%b8%a4%e4%b8%aa%e6%a0%88%e5%a6%82%e4%bd%95%e5%ae%9e%e7%8e%b0%e9%98%9f%e5%88%97%ef%bc%9f/在网上无意间看到了这个问...

2016-12-05 15:26:38

阅读数:241

评论数:0

拓扑排序算法实现

查看原文:http://www.wyblog.cn/2016/12/05/%e6%8b%93%e6%89%91%e6%8e%92%e5%ba%8f%e7%ae%97%e6%b3%95%e5%ae%9e%e7%8e%b0/拓扑排序,是将一个有向无环图DAG中所有顶点排成一个线性序列,使得图中任意一对...

2016-12-05 10:53:19

阅读数:588

评论数:0

凸包问题——Graham扫描法

查看原文:http://www.wyblog.cn/2016/12/01/%e5%87%b8%e5%8c%85%e9%97%ae%e9%a2%98-graham%e6%89%ab%e6%8f%8f%e6%b3%95/首先明白什么是凸包? 点集Q的凸包是指一个存在的最小凸多边形,满足Q中的所有点...

2016-12-01 11:24:09

阅读数:1293

评论数:0

哈夫曼树的总结

查看原文:http://www.wyblog.cn/2016/11/16/%e5%93%88%e5%a4%ab%e6%9b%bc%e6%a0%91%e7%9a%84%e6%80%bb%e7%bb%93/百科的定义: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这...

2016-11-16 16:36:47

阅读数:1587

评论数:0

数据结构一些知识点备忘

波兰表达式?逆波兰表达式? 波兰表达式即常见中缀表达式。2+3*/(5-1) 逆波兰表达式即后缀表达式。操作数在前, 操作符在后。2351-*+ 。 运算方法为遇操作数压栈,遇运算符两次出栈进行运算,并将结果压栈,一直重复以上的过程。

2016-09-02 21:47:57

阅读数:169

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭