wy的点滴

盛年不重来。

排序:
默认
按更新时间
按访问量

PAGE-RANK算法及SPARK实现分析

查看原文:http://www.wyblog.cn/2017/01/06/pagerank%e7%ae%97%e6%b3%95%e5%8f%8aspark%e5%ae%9e%e7%8e%b0%e5%88%86%e6%9e%90/算法 这里不总结算法,下面这篇博客总结的很清晰。 http://w...

2017-01-06 17:17:05

阅读数:1839

评论数:0

Apriori算法——关联分析

查看原文:http://www.wyblog.cn/2017/01/05/apriori%e7%ae%97%e6%b3%95%e5%85%b3%e8%81%94%e5%88%86%e6%9e%90/概念 Apriori算法是数据挖掘算法中的重要一员,它是通过对数据集进行关联分析,从而分析出数据集...

2017-01-05 16:35:57

阅读数:312

评论数:0

提升方法及AdaBoost

查看原文:http://www.wyblog.cn/2016/11/01/%e6%8f%90%e5%8d%87%e6%96%b9%e6%b3%95%e5%8f%8aadaboost/提升方法 提升方法思路比较简单,它意在通过改变训练样本之间相对的权重,从而学习出多个分类器,并将这些分类器进行...

2016-12-07 20:11:46

阅读数:1382

评论数:0

XGboost文献学习笔记

查看原文:http://www.wyblog.cn/2016/11/25/xgboost%e6%96%87%e7%8c%ae%e5%ad%a6%e4%b9%a0%e7%ac%94%e8%ae%b0/XGboost的学习资料主要为以下两个。 其一是PPT资料: http://homes.cs...

2016-11-25 16:06:00

阅读数:1377

评论数:0

统计学习浅谈

如果一个系统能够通过执行某个过程改进它的性能,这就是学习。 ————赫尔伯特.西蒙 人类的不断学习,经验占了很大的部分。通常我们遇到一件事需要判断,都是根据以往的经验,综合现在的情形,做出决策。而计算机呢?计算机没有自主学习的能力,它的经验就只能靠我们去提供。我们提供的就只能是能被计算...

2016-10-19 13:55:32

阅读数:369

评论数:0

朴素贝叶斯相关概念

朴素贝叶斯朴素贝叶斯是贝叶斯分类器里的一种方法。之所以称它朴素,原因就在于做出了特征条件全部独立的假设,但实际上,特征相互之间很大程度上都不是独立的,都有一些内在联系。但是,实践证明这因素也并未产生多大影响。 基于以上,可以总结, 1. 当样本特征数量比较多,且相关性比较大时,不适宜用朴素贝叶...

2016-09-18 21:26:53

阅读数:252

评论数:0

决策树与随机森林相关概念

决策树所谓的决策树, 就是一种树形结构。其内部每个节点代表一个特征的测试,每个一个分支代表测试的输出,而每个叶子节点则代表一种类别。 而随机森林,就是指的一群决策树所组成的一个森林。当一个新的样本需要归类,它的结果不是仅仅取决于某一刻决策树的结果,而是让森林里所有的决策树进行投票,选出结果最多的...

2016-09-18 21:01:04

阅读数:308

评论数:0

K近邻相关概念及其Python实现

K近邻它是一种基本分类与回归的方法。在分类时,根据其K个最近邻的训练实例的类别,通过多数表决等方式进行预测。K近邻不具有显式的学习过程。模型K近邻法,实际上对应特征空间的划分。以最近邻法为例,子空间的划分,是相邻点之间做垂直平分线/面,然后相交集后,划分出的各个子空间。当实例点处在某一特征子空间中...

2016-09-15 12:29:07

阅读数:329

评论数:0

感知机相关概念及Python实现

感知机 感知机目标在于对线性可分的数据集,能够求出将训练数据进行线性划分的分离超平面。 从以上描述可以知道,分离超平面不止一个,也就是说,只要能找到其中一个分离超平面,模型就成功了。 而支持向量机,是在感知机的基础上,进一步要求寻找到划分超平面距离最近分类样点的距离之和达到最小,也就是不仅要经验...

2016-09-13 15:57:26

阅读数:392

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭