以上三个方法操作都是对RDD进行的聚合操作。
- reduce()与fold()方法是对同种元素类型数据的RDD进行操作,即必须同构。其返回值返回一个同样类型的新元素。
num=sc.parallelize([1,2,3,4])
sum=num.reduce(lambda x,y: x+y)
fold()与reduce()类似,接收与reduce接收的函数签名相同的函数,另外再加上一个初始值作为第一次调用的结果。(例如,加法初始值应为0,乘法初始值应为1)
num.fold(0,lambda x,y:x+y)
- aggregate()方法可以对两个不同类型的元素进行聚合,即支持异构。
首先,看看aggrega

本文介绍了Spark中的reduce(), fold() 和 aggregate() 方法,这三个方法用于对RDD进行聚合操作。reduce() 和 fold() 适用于同构元素,其中fold() 区别在于提供了一个初始值。aggregate() 支持异构元素聚合,通过seqOp在分区内部聚合,而combOp则对所有分区结果进行进一步聚合。理解这些方法对于高效使用Spark进行数据处理至关重要。"
138138661,15326186,CentOS常用命令详解,"['Linux', 'CentOS', '系统管理', '命令行工具', 'MySQL']
最低0.47元/天 解锁文章
400

被折叠的 条评论
为什么被折叠?



