自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

转载 PCA(principal Component Analysis)

PAC(Probably Approximately Correct)   PCA,即主成分分析,是用来提取特征的一种算法,属于无监督学习。   效果很好,开创了子空间方法。 PCA的起源   PAC模型是计算学习理论中常用的模型,是Valiant牛在1984年提出来的,他认为“学习&am...

2018-09-30 13:48:05

阅读数 401

评论数 2

原创 Ising模型

Ising模型   Ising模型的提出是为了解释铁磁物质的相变,即磁铁在加热到一定临界温度以上会出现磁性消失的现象,而降温到临界温度以下又会表现出磁性。表述简单、内涵丰富、应用广泛这三种优点的模型。   参考资料:http://wiki.swarma.net/index.php/ISING模型 ...

2018-09-30 13:40:30

阅读数 999

评论数 0

原创 图像金字塔的应用

图像金字塔的应用   主要解决图像分析尺度问题的,许多图像分析任务,包括超分辨、目标检测等等都是一种很重要的手段。   更多的是构造特征时:1、适应尺度变化。2、增加特征维度,构造高维特征。 具体应用   sift算法;   在from coarse to fine由粗到精的搜索策略中都可以用金...

2018-09-30 13:38:06

阅读数 696

评论数 0

原创 二阶迭代法

二阶迭代法   该优化方法基于牛顿法" "其迭代方式如下:   x←x−[Hf(x)]−1∇f(x)   这里Hf(x)是Hessian矩阵,它是函数的二阶偏导数的平方矩阵。∇f(x)是梯度向量,这和梯度下降中一样。   直观理解上,Hessian矩阵描述了损失...

2018-09-30 13:35:46

阅读数 306

评论数 0

原创 领域适应学习(domain adaptation)

领域适应学习(domain adaptation)   iid(独立同分布) 为了解决训练集和测试集的数据分布不匹配(即不满足iid条件),在无监督学习中提出了domain adaptation(领域自适应) 。   领域自适应(Domain Adaptation)是迁移学习(Transfer L...

2018-09-30 11:04:24

阅读数 2519

评论数 6

原创 独立子空间分析(Independent subspace analysis,ISA)

独立子空间分析(Independent subspace analysis,ISA)   ISA 一种在ICA(Independent Component Analysis)基础上发展出来的机器学习方法。是一种无监督特征学习方法,可从图像中学习出具有相位不变的特征。   ISA将观察数据的向量分解...

2018-09-30 10:59:48

阅读数 527

评论数 0

原创 核方法kernel method

核方法kernel method   核方法(kernel method)是将数据映射到更高维的空间实现线性可分,而Kernel Function(核函数)只是一个关于特征向量的函数,本质是变换后的空间中的内积,这个函数的构造和引入的初衷只是为了提高SVM在高维的计算效率。   Kernel ...

2018-09-30 10:53:18

阅读数 285

评论数 0

原创 支持向量机SVM

SVM 小样本必备神器-SVM

2018-09-29 13:38:20

阅读数 110

评论数 0

原创 Sparse Filtering稀疏滤波

Sparse Filtering稀疏滤波   它根本上是一个特征提取器,一般来说,大部分的特征学习方法都是试图去建模给定训练数据的真实分布。   SAE的稀疏是对于模型参数的稀疏,即在cost function中加入了权值惩罚项;而SF,首先对特征矩阵的每一行进行正则化,除以其二范数,同样的方式对...

2018-09-29 13:34:11

阅读数 623

评论数 3

原创 人脸识别中常用的评价指标

人脸识别中常用的评价指标   几个比较重要的定义,用于评估二分类问题的预测结果 相关 不相关 预测到的 A(tp) B(fp) 误报 没预测到的 C(fn)漏报 D(tn) 参考资料:https://blog.csdn.net...

2018-09-29 11:04:43

阅读数 1893

评论数 0

原创 鲁棒性(Robustness)

鲁棒性(Robustness)   鲁棒性亦称健壮性、稳健性、强健性,是系统的健壮性,它是在异常和危险情况下系统生存的关键.

2018-09-29 10:55:07

阅读数 1603

评论数 0

原创 top-5错误率

top-5错误率   top-5 错误率——即对一张图像预测5个类别,只要有一个和人工标注类别相同就算对,否则算错。   ImageNet 图像分类大赛评价标准就是**Top-5 错误率。即1000类图像分类问题,训练数据集126万张图像,验证集5万张,测试集10万张(标注未公布)。 ...

2018-09-29 10:54:14

阅读数 302

评论数 0

原创 召回率(Recall)

召回率(Recall)   也称为 True Positive Rate:R = TP/(TP+FN) ; 反映了被正确判定的正例占总的正例的比重.

2018-09-29 10:53:18

阅读数 334

评论数 0

原创 标准化

标准化   假设样本集X的数学期望或均值(mean)为m,标准差(standard deviation,方差开根)为s,那么X的“标准化变量”X*表示为:(X-m)/s,而且标准化变量的数学期望为0,方差为1。   标准化后的值 = (标准化前的值-分量的均值)/分量的标准差 ...

2018-09-29 10:51:46

阅读数 72

评论数 0

原创 常用度量--MAE(平均绝对误差)和RMSE(均方根误差)

常用度量–MAE和RMSE   MAE和RMSE是关于连续变量的两个最普遍的度量标准。 定义   1)我们看看最流行RMSE,全称是Root Mean Square Error,即均方根误差,它表示预测值和观测值之间差异(称为残差)的样本标准偏差。   2)MAE,全称是Mean Abso...

2018-09-29 10:46:53

阅读数 8333

评论数 3

原创 感兴趣区域(ROI,region of interest)

感兴趣区域(ROI,region of interest)   机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。   在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴...

2018-09-29 10:41:32

阅读数 3682

评论数 0

原创 非极大值抑制(NMS,Non-maximum suppression)

非极大值抑制(NMS,Non-maximum suppression)   在object dection中应用非常广泛,简单地说,他就是对一些region proposals(物体的候选框)进行筛选,得到最佳的物体检测位置。 顾名思义就是把非极大值过滤掉(抑制)。 使用    1)非最大抑制是回...

2018-09-29 10:40:10

阅读数 57

评论数 0

转载 markdown进行首行缩进

markdown不会自动首行缩进,所以需要自己手动实现。这里给大家介绍两种方法实现,下面两种方法亲测有效。 方法一:在段落开头的地方,先输入下面的代码(三选一,根据具体需要选择),然后紧跟着输入文本就可以了。注意分号别丢了。 如图所示: 不断行的空白格 或&...

2018-09-28 18:04:08

阅读数 163

评论数 0

原创 bounding box overlap(IoU)

bounding box overlap(IoU) 即Intersection over Union,交并比。IoU的值定义:Region Proposal与Ground Truth的窗口的交集比并集的比值,如果IoU低于0.5,那么相当于目标还是没有检测到。   而2014年以来出现的MS ...

2018-09-28 17:52:06

阅读数 312

评论数 0

原创 交叉验证法(K折交叉检验)

2018-09-28 17:48:14

阅读数 919

评论数 0

提示
确定要删除当前文章?
取消 删除