wyfiverson
码龄8年
关注
提问 私信
  • 博客:39,699
    39,699
    总访问量
  • 62
    原创
  • 1,954,834
    排名
  • 7
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2017-04-20
博客简介:

wyfiveron的博客

查看详细资料
个人成就
  • 获得19次点赞
  • 内容获得7次评论
  • 获得72次收藏
  • 代码片获得190次分享
创作历程
  • 2篇
    2021年
  • 8篇
    2020年
  • 27篇
    2019年
  • 3篇
    2018年
  • 23篇
    2017年
成就勋章
TA的专栏
  • 其他
    2篇
  • 机器学习
    7篇
  • 推荐系统
    2篇
  • 刷题
    38篇
  • python日常记录
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

逻辑回归

Logistic Regressionhint:线性模型LR(没有考虑特征间的关联)——>LR +多项式模型(特征组合,不适用于特征稀疏场景,泛化能力弱)——>FM(适用于稀疏特征场景*,泛化能力强)——>FFM【省去零值特征,提高FFM模型训练和预测的速度,这也是稀疏样本采用FFM的显著优势】提到LR,需要先从线性回归模型进行讲解1.线性回归模型定义:给定数据集D={(x1, y1), (x2, y2), … },我们试图从此数据集中学习得到一个线性模型,这个模型尽可能准确地反
原创
发布博客 2021.03.24 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

决策树总结

记录决策树模型基础知识与发展决策树基础概念决策树是一种基本的分类和回归方法。决策树的学习通常包括三个步骤:特征选择、决策树的生成和决策树的修剪。信息增益在信息论和概率统计中,熵(entropy)是对随机变量不确定性\textbf{随机变量不确定性}随机变量不确定性的度量X是一个取有限个值的离散随机变量,P(X=xiX=x_{i}X=xi​)=pip_{i}pi​,i=1,2…,n.随机变量的熵定义为:H(X)=−∑i=1npilogpi-\sum_{i=1}^{n}p_{i}log p_{i}−
原创
发布博客 2021.03.24 ·
243 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

问题 B: 拦截导弹

题目描述某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭,并观测到导弹依次飞来的高度,请计算这套系统最多能拦截多少导弹。拦截来袭导弹时,必须按来袭导弹袭击的时间顺序,不允许先拦截后面的导弹,再拦截前面的导弹。输入每组输入有两行,第一行,输入雷达捕捉...
原创
发布博客 2019.03.09 ·
440 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

爬虫爬取豆瓣TOP250电影的信息1

输出的电影信息包括电影名,导演名,主演名,上映年份,归属国家,电影分类和评分import requestsfrom bs4 import BeautifulSoupdef get_movies(): name_list=[] eName_list=[] dirName_list=[] starName_list=[] year_list=[] ...
原创
发布博客 2019.07.31 ·
599 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

pta1001

1001A+B Format(20 point(s))Calculatea+band output the sum in standard format -- that is, the digits must be separated into groups of three by commas (unless there are less than four digits).In...
原创
发布博客 2018.12.31 ·
317 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Lightgbm的使用(未完待续)

本文用于记录Lightgbm的使用,使用包含两种,原生lightgbm与以scikit learn的接口方式来使用lightgbm1.原生方式lightgbm.train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name=’auto’, categorical_feature=’auto’, earl
原创
发布博客 2020.06.05 ·
324 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

FFM模型解读

1.概要FFM全称为:field-aware factorization machines,相比于FM模型,FFM引入了field的概念,特征可以被归类到field中。文章中举了一个例子,ESPN、Vogue和NBC同属于field出版商,Nike、Gucci和Adidas属于field 广告商,FFM可以利用这些信息,以下面的例子作进一步说明在FM模型中,FM的信息包含:wESPN∗wNike+wESPN∗wMale+wNike∗wMalew_{ESPN}*w_{Nike}+w_{ESPN}*w_{
原创
发布博客 2020.05.24 ·
1589 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pandas笔记

1.使用pd.read_table(file)来读取txt格式数据2.使用pd.read_excel(file)来读取xls或xlsx格式的数据3.pd.Series(values, index,name,dtype)来新建一个pandas的基本数据类型4.df = pd.DataFrame({‘col1’:list(‘abc’), ‘col2’:range(0,3), ‘col3’:[1.1,2.2,3.3]}, index=list(‘一二三’))5.修改行或列名df.rename(inde
原创
发布博客 2020.05.19 ·
211 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

FM模型

1. 概要(1)FM模型使用分解的系数,适合在高稀疏度的数据下估计特征之间的联系,并且可以在线性的时间内计算出结果,同时FM可以直接优化而不依靠支撑向量(2)与现有的其他分解模型比较来讲,FM模型更易应用。FM模型可以在任何实数特征向量上实现,但其他模型只能在受限制的数据下使用。2. FM通过下图进行分析,数据的存储方式如下,物理含义是下面有说明,数据具有较大的稀疏度。   用这个数据...
原创
发布博客 2020.05.13 ·
737 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

我的常规配置

清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple
原创
发布博客 2020.05.12 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Adaboost算法

文章目录1.Adaboost算法简介2.原理推导3.算法实现1.Adaboost算法简介\hspace*{0.6cm}AdaBoost,英文全称为"Adaptive Boosting"(自适应增强),是一种机器学习方法,AdaBoost方法的自适应在于:AdaBoost方法对于噪声数据和异常数据很敏感。AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好...
原创
发布博客 2020.04.19 ·
285 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LDA原理与实现

文章目录1.LDA原理1.1 概念1.2 公式推导2.LDA实现参考资料1.LDA原理1.1 概念LDA全称为Linear Discriminant Analysis,中文为线性判别分析。与PCA的作用相同,LDA的作用是降维,但是区别是PCA是无监督降维,而LDA是有监督的降维,LDA可以利用训练数据的类别标签。PCA只需要将数据映射到方差最大的空间,LDA需要将类别相同的数据尽可能靠近,...
原创
发布博客 2020.04.06 ·
1276 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

PCA(降维)原理与实现

1.PCA原理1.1概念PCA英文全名为Principal components analysis,主成分分析。PCA的作用是降维,利用正交变换来对一系列可能相关的变量的观测值进行线性变换,从而投影为一系列线性不相关变量的值,这些不相关变量称为主成分。PCA是无监督的降维方法,主要思想是将数据映射到维度更低的空间,这样可以减少对这些数据进行计算的计算量,同时进行PCA操作后也要保证数据易于进...
原创
发布博客 2020.03.27 ·
7166 阅读 ·
2 点赞 ·
0 评论 ·
28 收藏

Gradient Descient 小demo

数据:x_data=[338,333,328,207,226,25,179,60,208,606]y_data=[640,633,619,393,428,27,193,66,226,1591]import matplotlib.pyplot as pltimport numpy as npx_data=[338,333,328,207,226,25,179,60,208,606]y_...
原创
发布博客 2019.08.27 ·
143 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python查看和新建excel文件

1.使用的工具包xlwt:写excel文件,包括新建excel文件、sheet、在excel中写内容xlrd:读取excel文件内容这上面两个工具包具体功能可查相应官方文档2.写excel文件实例import xlwt# 设置表格样式def set_style(name,height,bold=0): style=xlwt.XFStyle() font=xlwt.Fo...
原创
发布博客 2019.07.31 ·
3435 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

python读写文本文件的总结

python读取文件的主要步骤为:1.打开文件2.读取文件3.关闭文件首先给出一个简单的读文本文件样例:f=open('file.txt','r')try: text=f.read()finally: f.close()在上述的代码中,首先使用open()方法打开文件,open()方法有两个参数,第一个是文件名,第二个是文件的打开模式(默认为‘r’,即为读)其中...
原创
发布博客 2019.07.28 ·
421 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

问题 I: 毕业bg

题目描述每 年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为“bg”。参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个 bg定义一个“快乐度”。现给定一个bg列表,上面列出每个bg的快乐度、持续长度、bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最 大的快乐度。例如有4场bg:第1场快乐度为5,持续1小时,发起人必须在1小时后离开;第2场...
原创
发布博客 2019.03.13 ·
299 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

问题 G: 点菜问题

题目描述北大网络实验室经常有活动需要叫外买,但是每次叫外买的报销经费的总额最大为C元,有N种菜可以点,经过长时间的点菜,网络实验室对于每种菜i都有一个量化的评价分数(表示这个菜可口程度),为Vi,每种菜的价格为Pi, 问如何选择各种菜,使得在报销额度范围内能使点到的菜的总评价分数最大。注意:由于需要营养多样化,每种菜只能点一次。输入输入的第一行有两个整数C(1 <= C <= ...
原创
发布博客 2019.03.10 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

问题 F: 放苹果

题目描述把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。输入第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。输出对输入的每组数据M和N,用一行输出相应的K。样例输入26 37 2样例输出74一开...
原创
发布博客 2019.03.10 ·
280 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

杭电ACM试题分类

第一篇1001 这个就不用说了吧1002 简单的大数1003 DP经典问题,最大连续子段和1004 简单题1005 找规律(循环点)1006 感觉有点BT的题,我到现在还没过1007 经典问题,最近点对问题,用分治1008 简单题1009 贪心1010 搜索题,剪枝很关键10111012 简单题1013 简单题(有个小陷阱)1014 简单题1015 可以看作搜索题吧...
转载
发布博客 2019.03.10 ·
175 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多