《Long and Short-Term Recommendations with Recurrent Neural Networks》阅读

递归神经网络最近已成功地应用于基于会话的推荐问题中,并且是基于序列预测的协同过滤日益增长的兴趣的一部分。这种新的推荐方法揭示了以前被忽视的一个方面:短期和长期推荐之间的差异。 在这项工作中,我们描述了许多种协同过滤方法的完整短期/长期概况,并且我们展示了如何应用循环神经网络进行更好的短期或长期预测。我们还表明,RNN不仅适用于基于会话的协同过滤,而且非常适合在密集数据集上进行协同过滤,并且它优于传统的项目推荐算法。

关键词:推荐系统;协同过滤;循环神经网络;序列预测;

1.介绍

协同过滤方法通常将用户视为兴趣在时间上固定的静态实体。 例如,矩阵分解算法使用用户的所有评分(或隐式反馈)来构建用户品味的表示,而忽略了用户品味的可能演变或消失。有些像time-SVD ++算法,为了提升评分预测而加入评分的时间戳,但是对用户和项目之间交互的序列特征的使用研究很少。

然而,最近一些方法已经开始将协同过滤的项目推荐问题构建为序列预测问题:假设用户使用了一个物品,又使用了下一个...那么他接下来要使用哪个? 这些工作的动机来自数据的本质:它们要么处理具有大量用户但用户信息非常稀疏的数据集,要么处理基于会话的数据集,其中用户仅在会话时被识别,并且作出的推荐必须仅基于用户的最后几次点击。在这两种情况下,为每个用户构建模型是不现实的,而是采用基于用户过去几次交互的方式直接进行推荐。序列信息的使用补偿了用户和项目之间记录的交互的稀缺性。

在本文的第一部分,我们展示了基于序列预测(尤其是递归神经网络)的方法在密集数据集上同样强大。 用户的动作序列确实包含许多信息:它可以揭示用户品味的演变,它可能有助于识别哪些项目与当前用户的兴趣无关,或哪些项目成为消失的兴趣的一部分。

然后,本文突出了推荐系统的一个方面,之前被忽略了,但是通过序列预测方法揭示了:短期预测和长期预测之间的差异。 长期预测旨在确定用户最终将消费哪些项目,而不考虑何时消费它们,而短期预测准确预测用户的即时行为:他即将消费什么,在极端情况下 ,接下来会消耗什么。在静态设置中,这种区别没有意义,因为项目的顺序被忽略(在训练和测试期间),但在基于序列的方法中,这种区别是显而易见的,因为序列预测算法专门设计用于预测下一项, 这使得他们特别擅长短期预测,有时以更糟糕的长期预测为代价。

一些应用程序更倾向于短期预测,而其他应用程序旨在进行良好的长期预测(例如,推荐播放列表中的下一首歌曲以及基于用户已阅读过的内容推荐书籍)。 我们详细研究了推荐系统的这个短期/长期预测,并做出以下贡献:

  • 我们介绍了推荐系统的短期/长期概况的实际可视化,并用它来比较几种算法。
  • 我们展示了如何修改RNN以找到长期和短期预测之间的良好平衡。
  • 我们探讨了短期预测和多样性之间的关系。

2.相关工作

一些早期的工作将协同过滤作为序列预测问题,并使用简单的马尔可夫链方法来解决它。 在21世纪初,Zimdars等人。 测试马尔可夫模型的网页推荐。 Mobasher等采用类似的方法,使用序列模式挖掘。两者都显示了基于序列的方法相对于最近邻方法的优越性。 Brafman等人提出了推荐系统作为马尔科夫决策过程的观点,虽然预测模型不是他们的主要关注点,但他们确实提出了一种马尔可夫链方法,通过skipping和clustering等一些启发式方法得到了改进。

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值