wyply115的专栏

雄关不惧,成败自含香!

tensorflow-实现knn算法-识别mnist数据集

概述 Mnist数据集被分成两部分:60000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test)。每一张图片包含28像素X28像素的灰度图片。 我们要做的是对测试数据集的每一个数据从训练数据集中找出最临近的类别,进行预测。 那么如何找最临近的(距离),我们通...

2019-02-14 12:28:58

阅读数 65

评论数 0

tensorflow-分布式

概述 分布式Tensorflow是由高性能的gRPC框架作为底层技术来支持的。这是一个通信框架gRPC(google remote procedure call),是一个高性能、跨平台的RPC框架。RPC协议,即远程过程调用协议,是指通过网络从远程计算机程序上请求服务。 分布式架构 ...

2019-01-17 08:57:51

阅读数 19

评论数 0

tensorflow-神经网络识别验证码(数字+小写字母)

分析 数据样例:假设给出如下数据1000张601863大小的图片(电脑太慢,数据就不弄多了) 数据下载连接:https://download.csdn.net/download/wyply115/10913733 单个验证码样式如下: 识别分析 识别流程分析 ...

2019-01-13 15:07:36

阅读数 228

评论数 0

tensorflow-神经网络识别手写数字

数据下载连接:http://yann.lecun.com/exdb/mnist/ 下载t10k-images-idx3-ubyte.gz;t10k-labels-idx1-ubyte.gz;train-images-idx3-ubyte.gz;train-labels-idx1-ubyte.gz...

2019-01-11 15:19:58

阅读数 49

评论数 0

认识tensorflow-自模拟一个线性回归预测

import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 不显示警告 def myregression(): ''' 自实现一个线性回归预测 :return:...

2019-01-06 11:06:37

阅读数 235

评论数 0

机器学习-10.K-means

1. 概述 k-means为无监督学习,即没有目标值。 k-means步骤 计算到k中心的距离一般采用欧式距离进行计算。 图解如下: API:sklearn.cluster.KMeans k-means的使用一般用于分类之前进行,在没有目标值,仅有历史的数据特征时,又想预测新数据的类别,可...

2018-12-25 16:55:56

阅读数 23

评论数 0

机器学习-9.逻辑回归

逻辑回归是将线性回归的结果通过sigmoid函数映射到0到1的区间内,而[0,1]对应百分比即概率,从而转化为分类问题 逻辑回归只能解决二分类问题。 公式: hθ(x)=g(θTx)=11+e−θTxh_\theta(x) =g(\theta^Tx)=\frac{1}{1+e^{-\theta^...

2018-12-25 16:02:36

阅读数 25

评论数 0

机器学习-8.线性回归

定义:

2018-12-23 17:09:46

阅读数 67

评论数 0

机器学习-7.决策树与随机森林

1. 认识决策树 如上图所示,这就是一棵决策树。 2. 信息论基础 假设有32个球队比赛去猜冠军,在对球队没有任何了解时,需要猜几次肯定能猜到?,这个大家应该都知道,采用二分法的话最多5次就能猜到,用数学知识解答就是log32(以2为底)=5。 那么在信息论中,32个球队,log32=5比特;...

2018-12-18 18:00:17

阅读数 64

评论数 0

机器学习-6.朴素贝叶斯

1. 基础的概率知识 条件概率和联合概率 联合概率:包含多个条件,且所有条件同时成立的概率。 记作:P( A , B ) = P(A)P(B) 条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率 记作:P(A|B) 特性:P(A1,A2|B) = ...

2018-12-18 13:52:30

阅读数 88

评论数 0

机器学习-5.k-近邻算法(KNN)

定义:所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。 白话来讲就是通过你的“邻居”来推断你的类别。 上述概念中讲最临近,那如何求最临近?也就是如何求...

2018-12-17 13:15:21

阅读数 267

评论数 7

机器学习-4.开发流程、算法基本认知

1. 机器学习开发流程 我们作为机器学习的开发工程师首先要明确自己学习的定位,也就是确定学习边界。 大部分复杂模型的算法设计都是由算法工程师去做的,我们只需要: 分析很多的数据; 分析具体的业务; 应用常见的算法; 特征工程、调参数、优化。 我们学习应达到一下目的...

2018-12-15 15:46:31

阅读数 255

评论数 0

机器学习-3.数据特征预处理与数据降维

特征预处理定义:通过特定的统计方法(数学方法)将数据转换成算法要求的数据。 处理方法 数值型数据:标准缩放(1.归一化,2.标准化);缺失值。 类别型数据:one-hot编码。 时间类型:时间的切分。 预处理API:sklearn.preprocessing 1...

2018-12-15 14:40:32

阅读数 162

评论数 0

机器学习-2.特征工程和文本特征提取

1. 数据集的组成 前面讲了,机器学习是从历史数据当中获得规律,那这些历史数据的组成是个什么格式?大都存储在哪里? – 在机器学习里大多数数据不会存在数据库中,大都存在文件中(比如csv文件) – 不存在数据库原因:1. 读取速度导致存在性能瓶颈。2. 存储的格式不太符合机器学习要求的数...

2018-12-14 11:20:13

阅读数 40

评论数 0

机器学习-1.简介

1. 人工智能名人介绍 人工智能之父:艾伦.图灵,其中一个重要的概念叫“图灵测试”:指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。在进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智...

2018-12-13 14:19:51

阅读数 34

评论数 0

linux常用命令详解(106个)

注意事项 linux严格区分大小写 ls 简述:列出文件或目录列表。 ls #默认列出当前目录下的所有文件。 ls -l(long) #以长格式查看文件。 ls -d(directorys) #查看目录。 ls -F #给不同文件的结尾加标识 ls -p...

2018-12-11 17:57:35

阅读数 107

评论数 0

ssh远程连接客户端连不通故障排查

检查路通不通,即客户端到服务端物理链路通不通,ping ip看能否成功。 不成功可能的原因:网卡、ip、网线、防火墙。 检查服务是否开启,这里检查ssh服务,而ssh服务端口默认是22 telnet ip 22 检测服务是否开启。telnet服务linux默认自带并开启状态。 不同可能的原...

2018-12-11 16:08:15

阅读数 157

评论数 0

方差为什么用平方,而不是绝对值?

问题一:如果要从甲、乙两名选手中选拔一名参加射击比赛?你将设计什么方案? S:总分高的。 T:若有一名选手射击5次,总分30;而另一名选手射击10次,总分50分,你又会选择谁? S:看来还是算平均分合适。 问题二:你选择谁? 甲:3、5、6、7、9 乙:4、5、6、7、8 从数据中,可以看出用平...

2018-11-21 11:58:28

阅读数 677

评论数 1

matplotlib常用统计图形的使用

一、matplotlib的安装 使用pip或conda直接安装即可(需要安装pip或conda)。 pip install matplotlib conda install matplotlib 二、matplotlib基本使用流程 Created with Raphaël 2.2....

2018-11-18 15:18:37

阅读数 83

评论数 0

ubuntu16.04.5 安装 python3.7

1. 安装依赖包 sudo apt-get update sudo apt-get install build-essential python-dev python-setuptools python-pip python-smbus sudo apt-get install bu...

2018-11-15 09:35:54

阅读数 70

评论数 0

提示
确定要删除当前文章?
取消 删除