Stable Diffusion 绘画入门教程(webui)-ControlNet(NormalMap) 法线贴图NormalMap可以把参考图的光影分布关系,法线贴图可以实现在不改变物体真实结构的基础上也能反映光影分布的效果,被广泛应用在 CG 动画渲染和游戏制作等领域
Stable Diffusion 绘画入门教程(webui)-ControlNet(Shuffle) Shuffle(随机洗牌),这个预处理器会把参考图的颜色打乱搅拌到一起,然后重新组合的方式重新生成一张图,可以想象出来这是一个整体风格控制的处理器。那么问题来了,官方为啥会设计个这样的处理器呢,主要是给懒人用的,不想写提示词或者反推,直接拿原图进行颜色重组组合生成一个风格相近的图就可以了。
Stable Diffusion 绘画入门教程(webui)-ControlNet(Recolor) Recolor,顾名思义就是重上色的意思,很明显能想到的用法就是老照片上色,也就是老照片修复,当然玩法上也可以对衣服服装换色,头发换色等局部换色玩法
Stable Diffusion 绘画入门教程(webui)-ControlNet(Inpaint) 上篇文章介绍了语义分割Tile/Blur,这篇文章介绍下Inpaint(重绘)Inpaint类似于图生图的局部重绘,但是Inpain效果要更好一点,和原图融合会更加融洽
Stable Diffusion 绘画入门教程(webui)-ControlNet(Tile/Blur) 上篇文章介绍了y语义分割Seg,这篇文章介绍下Tile/Blur(增加/减少细节)Tile用于增加图片细节,一般用于高清修复,Blur用于减少图片细节(图片模糊)
Stable Diffusion 绘画入门教程(webui)-ControlNet(Seg) 上篇文章介绍了深度Depth,这篇文章介绍下seg(Segmentation)意思为语义分割, 通俗理解就是把图中的不同物体元素按类别不同,标为不同的颜色,不同的颜色代表不同的元素类别
Stable Diffusion 绘画入门教程(webui)-ControlNet(IP2P) 上篇文章介绍了深度Depth,这篇文章介绍下IP2P(InstructP2P), 通俗理解就是图生图,给原有图加一些效果
Stable Diffusion 绘画入门教程(webui)-ControlNet(深度Depth) 上篇文章介绍了线稿约束,这篇文章介绍下深度Depth顾名思义,就是把原图预处理为深度图,而深度图可以区分出图像中各元素的远近关系,那么啥事深度图?
Stable Diffusion 绘画入门教程(webui)-ControlNet(线稿约束) 1、Canny(硬边缘):识别线条比较多比较细,一般用于更大程度得还原照片2、MLSD(直线):这个只能识别直线,大部分用于建筑设计类居多3、Lineart(线稿):相对Canny识别要少,但相对SoftEdge(软边缘)要多,一般用于真人和素描4、SoftEdge:识别大概的轮廓,会比较柔和,但这样能给SD更多发挥的空间5、scribble/Sketch(涂鸦/草图):类似于图生图的涂鸦功能,会根据自己画的线条生成图片
Stable Diffusion 绘画入门教程(webui)-ControlNet(姿态预处理器openpose) 这个openpose处理器主要用于控制姿态,通常的实战用法用于:1、控制人物身体姿势2、控制人物手指(经常出现手指畸形或多手指用这个很方便控制住)3、控制人物表情
Stable Diffusion 绘画入门教程(webui)-ControlNet ControlNet可以说在SD里有着举足轻重的地位,如果没有ControlNet,sd的可玩性和实用性将大大降低。前面几篇文章介绍了和,本篇文章介绍sd里最关键的第三个要素–ControlNet。
Stable Diffusion 绘画入门教程(webui)-lora lora是一种通过少量的素材就能训练出来的模型,在生成图片时会和大模型结合,一起对产出的图片结果进行调整。举个通俗的例子,比如我想要保持每次输出的小姐姐是同一个人怎么办,此时可以通过lora来解决