风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)(Simulink仿真实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)研究

一、风光储系统的基本组成与工作原理

二、PEM电解制氢技术原理及特性

三、光伏-PEM制氢系统的耦合方式与能量管理策略

四、仿真工具与模型构建

五、仿真案例与参数设置

六、挑战与未来方向

📚2 运行结果

2.1整体模型

2.2 光伏模块

2.3 储能模块

2.4 风机模块

2.5 电解槽制氢模块

2.6 仿真结果

🎉3 参考文献 

🌈4 Simulink仿真实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)研究

摘要:
电解水制氢作为一种新型储能手段,可作为调整风光能源输出电力的绿色手段。该文以风力发电、光伏发电、电解制氢与燃料电池为研究对象,通过对风光互补发电系统与电解水制氢系统的输出输入功率进行建模仿真,协调优化控制风光电、电解槽、燃料电池以及系统负载的负荷变化要求,改善了风光发电电解水制氢系统与系统负荷之间的负荷不平衡问题,为风光豆补可再生能源系统的稳定运行提供了理论依据。
关键词: 风力发电;光伏发电;风光互补;电解水制;燃料电池;仿真;

在电力系统分析中,能源的高效整合一直是关键课题。本研究采用Simulink开发了一套包含风光储及电解制氢系统的仿真模型,旨在实现多种能源形式的协同优化。

具体而言,光伏模块通过模拟光伏阵列的特性、最大功率点跟踪(MPPT)算法以及功率变换电路的工作机制,精准优化光伏系统的发电性能。储能系统则采用电压电流双闭环控制策略,通过动态调节功率变换器的开关状态,实现对电池充放电过程的精确控制,从而确保母线电压的稳定。风电模型利用叶片捕获风能,通过永磁同步电机和变流器将机械能高效转化为电能,并借助最大功率点跟踪技术进一步提升发电效率。电解槽制氢系统作为一个复杂的多学科体系,涵盖电能转换、电化学反应、参数控制与实时监测,采用功率外环与电流内环的双环控制策略,实现恒功率制氢。

该仿真模型聚焦于风光储系统与电解制氢系统的协同运行,整合风能、太阳能、储能技术和电解制氢工艺,致力于实现清洁能源的高效利用与灵活存储。这一模型不仅为研究和优化综合能源系统提供了重要工具,也为相关领域的学术研究和工程实践提供了有力支持。仿真基于Simulink平台开发,提供2016b、2018b和2023b三个版本,并包含简化的光储与电解制氢模型,以满足不同研究和学习需求。


一、风光储系统的基本组成与工作原理
  1. 系统组成

    • 发电单元:包括风力发电机(将风能转化为交流电)和光伏阵列(将太阳能转化为直流电)。
    • 储能单元:通常采用磷酸铁锂电池、超级电容器等,用于平抑可再生能源的波动性,确保电力输出稳定。
    • 电力转换装置:AC-DC整流器(用于风力发电接入直流母线)、DC-AC逆变器(用于光伏和储能接入交流负载)。
    • 控制与调度系统:实现能量管理、功率分配和负荷平衡。
  2. 工作原理

    • 风力发电通过整流逆变装置接入交流母线,光伏发电通过逆变器并入直流母线,储能系统根据需求充放电以平衡供需。
    • 系统利用风能和光能的时空互补性(例如,白天光伏出力高,夜间风电出力高)优化能源利用效率。

二、PEM电解制氢技术原理及特性
  1. 核心原理

    • 水分子在阳极催化剂(如铱)作用下分解为氧气(O₂)、质子(H⁺)和电子(e⁻),质子通过质子交换膜(PEM)到达阴极,与电子结合生成氢气(H₂)。
    • 总反应式:

  2. 技术优势

    • 高纯度:氢气纯度>99.99%,无需额外提纯。
    • 快速响应:负荷范围0-150%,启动时间仅需数秒,适合可再生能源波动性输入。
    • 高能效:效率达70%-90%,电流密度可达1A/cm²(碱性电解槽的4倍)。
    • 环保性:以纯水为原料,无碱液污染。

三、光伏-PEM制氢系统的耦合方式与能量管理策略
  1. 耦合方式

    • 直接耦合:光伏阵列直接连接PEM电解槽,省去DC-DC转换器,但需严格匹配电压电流特性(如I-U曲线匹配)。
    • 间接耦合:通过储能系统(如锂电池)和DC-DC变换器调节功率,提高灵活性,适用于波动性输入。
  2. 关键控制策略

    • 最大功率点跟踪(MPPT) :采用变步长扰动观察法优化光伏输出,确保最大能量捕获。
    • 储能协调控制
  • 下垂控制与双向DC-DC变换器结合,稳定直流母线电压(如310V或800V)。
  • 蓄电池根据光伏出力动态充放电:光伏不足时放电,过剩时充电。
    • 电解槽功率控制:采用功率外环+电流内环的双闭环策略,实现恒功率制氢。
  1. 动态调节优化
    • 通过调节PEM电解槽的串联/并联单元数量,优化I-U曲线与光伏最大功率点(MPP)的重合度,提升效率。

四、仿真工具与模型构建
  1. 常用工具

    • MATLAB/Simulink:主流仿真平台,支持风光储与电解制氢系统的多模块集成。
    • HOMER:用于微电网容量优化和经济性分析,但需结合其他工具深化动态仿真。
  2. Simulink模型示例

    • 光伏模块:基于等效电路模型,集成MPPT算法(如扰动观察法)。
    • 储能模块:采用电压电流双闭环控制,锂离子电池模型参数包括容量、充放电效率等。
    • PEM电解槽模型:动态模型包含产氢速率、储氢罐压力等参数,电压控制目标为800V。
    • 系统集成:通过母线电压稳定控制实现多模块协同,仿真版本涵盖2016b至2023b。

五、仿真案例与参数设置
  1. 典型参数

    • 光伏阵列:单晶硅组件,功率10-20kW,MPPT跟踪效率>98%。
    • 储能系统:磷酸铁锂电池组,容量20kWh,充放电效率90%。
    • PEM电解槽:额定功率5-10kW,产氢速率330mol/s,工作温度60-80℃。
  2. 仿真结果

    • 动态响应:光照强度突变时,储能系统可在0.1秒内响应,维持母线电压波动<2%。
    • 制氢稳定性:电解槽在光照波动下仍保持恒功率输出,储氢罐压力随产氢量线性增长。

六、挑战与未来方向
  1. 技术挑战

    • 成本问题:PEM电解槽依赖贵金属催化剂(如铂、铱),设备成本高。
    • 动态匹配:光伏出力与电解槽功率的实时协调需更高精度控制算法。
  2. 研究方向

    • 材料创新:开发非贵金属催化剂、高耐久性PEM膜以降低成本。
    • 系统优化:结合人工智能预测风光出力,优化储能与制氢调度。
    • 规模化应用:探索风光储-氢能系统在电网调峰、交通燃料等领域的集成。

📚2 运行结果

2.1整体模型

整体模型采用分区设置,风光储及电解槽制氢模块划分清晰

2.2 光伏模块

橙色部分是光伏阵列的模型,它接收光照强度(Ir)和温度(T)等参数作为输入,MPPT 的作用是通过调整光伏阵列的工作点,使其始终工作在最大功率点,以提高光伏系统的效率。

2.3 储能模块

2.4 风机模块

整个风力发电系统仿真模型通过模拟风能捕获、机械能与电能转换、电能变换与控制以及功率监测等过程,全面展示了风力发电系统的工作原理和性能特点。

2.5 电解槽制氢模块

2.6 仿真结果

 

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]陈梦萍,任建兴,李芳芹.风光互补与电解水制氢系统负荷的协调稳定运行[J].太阳能学报,2023,44(03):344-350.

🌈Simulink仿真实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值