💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
IMU的误差模型采用一阶马尔科夫噪声模型,将加速度计和陀螺仪噪声建立为高斯白噪声和Guass-Markov噪声。
结论:UWB-IMU组合定位导航效果,比之单一的导航,效果很明显,尤其是当UWB布局上无法解决垂直空间分辨率低时,融合算法效果明显。目前使用实际数据,效果亦能控制在0.5m以内,定位精度还可以提升,已证明该滤波方法可靠有效。
1. 技术原理对比
1.1 UWB单独定位技术
- 原理:通过发射纳秒级窄脉冲(带宽≥500 MHz),测量信号传播时间(TOF/TDOA)计算距离,结合多个基站实现三角定位。
- 核心参数:
- 频率范围:3.1-10.6 GHz
- 精度:理论厘米级(实际受环境影响)
- 穿透能力:可穿透非金属障碍物(如墙壁)
- 定位方法:
- TOF(飞行时间) :直接测量信号往返时间。
- TDOA(到达时间差) :通过信号到达不同基站的时间差定位。
1.2 UWB-IMU融合定位技术
- 原理:结合UWB的绝对位置信息与IMU(惯性测量单元)的相对运动数据:
- IMU组件:三轴加速度计+陀螺仪,提供角速度及线加速度。
- 融合算法:卡尔曼滤波(EKF/UKF)为主,动态校正IMU累积误差与UWB信号丢失。
- 数据互补性:
- UWB:抑制IMU积分漂移。
- IMU:高频运动补偿(200Hz+),解决UWB采样率不足(通常≤40Hz)。
2. 核心差异点分析
维度 | UWB单独定位 | UWB-IMU融合定位 |
---|---|---|
误差来源 | 多径效应、NLOS(非视距)误差 | 抑制NLOS影响,IMU短期误差可忽略 |
连续性 | 信号遮挡时中断 | IMU提供连续轨迹(短时无UWB信号) |
动态响应 | 高速运动易滞后 | 高频IMU数据支持实时姿态跟踪 |
累积误差 | 无 | IMU单独使用时有漂移,UWB可校正 |
部署复杂度 | 需高密度基站(≥4个) | 基站密度要求降低(IMU填补盲区) |
关键结论:融合技术通过时空互补,将定位维度从"位置"扩展至"位置+姿态",显著提升鲁棒性。
3. 性能指标对比
3.1 精度
- UWB单独定位:
- 视距(LOS)环境:10-30 cm
- 非视距(NLOS)环境:误差可达1-5 m(如煤矿井下)
- 融合定位:
- 实验提升:NLOS环境下精度提高18.8%-42%(电力巡检机器人x轴误差从0.062m降至0.036m)
- 理论下限:PCRLB(后验克拉美罗界)从0.29m优化至0.22m
- 实验提升:NLOS环境下精度提高18.8%-42%(电力巡检机器人x轴误差从0.062m降至0.036m)
3.2 延迟与功耗
指标 | UWB单独定位 | UWB-IMU融合 |
---|---|---|
延迟 | 20-100 ms(基站通信) | ≤10 ms(IMU数据实时性) |
功耗 | 低(脉冲模式) | 增加15-30%(IMU持续供电) |
注:融合系统可通过IMU睡眠模式优化功耗,但计算复杂度更高(EKF计算量增3倍)。
4. 技术优势与局限对比
4.1 UWB单独定位
- 优势:
- 低功耗(脉冲占空比<0.5%)
- 抗多径能力强(窄脉冲分辨力达133ps)
- 局限:
- NLOS场景误差剧增(信号折射导致时延)
- 基站部署成本高(复杂环境需每10m部署)
4.2 UWB-IMU融合定位
- 优势:
- 鲁棒性提升:在遮挡、动态环境中误差波动降低50%
- 支持姿态估计:扩展至6自由度(6-DoF)
- 局限:
- 成本增加(IMU模块成本占比30-50%)
- 算法复杂性:需解决时间同步与传感器标定问题
5. 典型应用场景对比
场景类型 | 适用技术 | 案例与效果 |
---|---|---|
静态资产追踪 | 纯UWB | 仓库货架定位(精度15cm,成本敏感) |
复杂室内导航 | 融合定位 | 煤矿机器人(NLOS误差抑制42%) |
高速动态场景 | 融合定位 | 无人机群(EKF融合实现cm级三维定位) |
短时高精度触发 | 纯UWB | 体育赛事计时(瞬时精度±10cm) |
6. 研究案例实证
-
电力作业场景(2021)
- 方法:EKF融合UWB/IMU + NLOS识别算法
- 结果:动态定位误差从58.47cm(纯UWB)降至51.96cm。
-
农业自动化(2025)
- 方法:紧耦合UWB-IMU + 自适应抗差滤波
- 结果:割草机静态误差从14.82cm→10.33cm,动态RMSE≤6.63cm。
-
煤矿井下(2023)
- 方法:IMU辅助UWB紧组合
- 结果:垂直方向误差稳定在10cm内(纯UWB无法解析)。
7. 未来发展方向
- 算法优化:
- 深度学习替代传统滤波(如LSTM处理时序误差)
- 多传感器融合:
- 结合视觉/LiDAR解决纯UWB的几何局限性
- 标准化与低成本化:
- MEMS-IMU集成芯片(尺寸<5mm²,功耗≤10mW)
结论
UWB-IMU融合定位通过时空维度互补,在复杂环境(NLOS、动态场景)中显著提升精度与连续性,但需权衡成本与功耗。纯UWB在简单视距场景仍具优势,尤其对功耗敏感场景。未来技术演进将聚焦多模态融合与嵌入式轻量化,以满足工业4.0与元宇宙的高精度定位需求。
📚2 运行结果
部分代码:
%%航迹发生器
atti = zeros(3,1); %滚转、俯仰、偏航(单位:度)
atti_rate = zeros(3,1); %滚转角速率、俯仰角速率、偏航角速率(单位:度/秒)
veloB = zeros(3,1); %飞机运动速度--X右翼、Y机头、Z天向(单位:米/秒)
acceB = zeros(3,1); %飞机运动加速度--X右翼、Y机头、Z天向(单位:米/秒/秒)
posi = zeros(3,1); %航迹发生器初始位置经度、纬度、高度(单位:度、度、米)
posi = [26;70;-19];
atti(1,1) = 0; %
atti(2,1) = 0; %
atti(3,1) = 90; %初始航向角(单位:度)
%%IMU输出
Wibb = zeros(3,1); %机体系陀螺仪输出(单位:度/秒)
Fb = zeros(3,1); %机体系加速度计输出(单位:米/秒/秒)
Gyro_fix = zeros(3,1); %机体系陀螺仪固定误差输出(单位:弧度/秒)
Acc_fix = zeros(3,1); %机体系加速度计固定误差输出(单位:米/秒/秒)
Gyro_b = zeros(3,1); %陀螺随机常数(弧度/秒)
Gyro_r = zeros(3,1); %陀螺一阶马尔可夫过程(弧度/秒)
Gyro_wg = zeros(3,1); %陀螺白噪声(弧度/秒)
Acc_r = zeros(3,1); %加速度一阶马尔可夫过程(米/秒)
%%UWB仿真输出
posiG = zeros(3,1); %UWB输出的飞行器位置测距值
%%捷联惯导仿真
attiN = zeros(3,1); %飞行器初始姿态
veloN = zeros(3,1); %飞行器初始速度(相对于导航系)
posiN = zeros(3,1); %飞行器初始位置
WnbbA_old = zeros(3,1); %角速度积分输出(单位:弧度)
posiN = posi;
attiN = atti;
%%KALMAN滤波输出
T_D = 1; %离散周期
T_M = 0; %滤波量测产生时间(秒)
Xc = zeros(18,1); %综合模型状态量
PK = zeros(18,18); %协方差阵
Xerr = zeros(1,18); %状态估计量的误差
kflag = 0; %GPS信号有效标志位(1-有效)
Acc_modi = zeros(3,1); %加速度计误差修正值
Gyro_modi = zeros(3,1); %陀螺仪误差修正值
%%初始对准
kc = 0;
tmp_Fb = zeros(3,1);
tmp_Wibb = zeros(3,1);
t_alig = 0;
old_veloB = veloB;
old_atti = atti;
deg_rad = pi/180;
TraceData = [];
IMUData =[];
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]胡文龙,周宇飞,宋全军,等.基于UWB和IMU信息融合的室内定位算法研究[J].制造业自动化, 2023, 45(2):193-197.
[2]张松浩,崔敏,张鹏.基于UWB和IMU紧组合的室内定位导航算法研究[J].科学技术创新, 2023(13):17-20.
[3]王嘉欣,李桂林,曹海东.UWB和IMU技术融合的室内定位算法研究[J].单片机与嵌入式系统应用, 2020, 20(8):3.