Prime算法

普利姆(Prime)算法(只与顶点相关)

 

算法描述:

普利姆算法求最小生成树时候,和边数无关,只和定点的数量相关,所以适合求稠密网的最小生成树,时间复杂度为O(n*n)。

算法过程:

1.将一个图的顶点分为两部分,一部分是最小生成树中的结点(A集合),另一部分是未处理的结点(B集合)。

2.首先选择一个结点,将这个结点加入A中,然后,对集合A中的顶点遍历,找出A中顶点关联的边权值最小的那个(设为v),将此顶点从B中删除,加入集合A中。

3.递归重复步骤2,直到B集合中的结点为空,结束此过程。

4.A集合中的结点就是由Prime算法得到的最小生成树的结点,依照步骤2的结点连接这些顶点,得到的就是这个图的最小生成树。


算法实现具体过程:

1.将第一个点放入最小生成树的集合中(标记visit[i]=1意思就是最小生成树集合)。

2.从第二个点开始,初始化lowcost[i]为跟1点相连(仅仅相连)的边的权值(lowcost[i]不是这个点的最小权值!在以后会逐步更新)。

3.找最小权值的边。

从第二点开始遍历,如果不是最小生成树的集合的点,则找出从2到n的最小权值(lowcost[j])。

4.将找出来的最小权值的边的顶点加入最小生成树的集合中(标记visit[i] = 1),权值想加。

5.更新lowcost[j]集合。

假设第一次:lowcost[2]代表与1相连的点的权值,现在加入了k点。则比较k点与2点的边map[k][2]和lowcost[2]的大小,若lowcost[2]大,则lowcost[2] = map[k][2]。(关键步骤:实质就是每在最小生成树集合中加入一个点就需要把这个点与集合外的点比较,不断的寻找两个集合之间最小的边)

6.循环上述步骤,指导将全部顶点加入到最小生成树集合为止。


代码如下:

[cpp]  view plain copy
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #include<cstring>  
  4. #include<string>  
  5. #include<algorithm>  
  6. using namespace std;  
  7. #define INF 0x3f3f3f3f  
  8. #define MAXN 110  
  9. int map[MAXN][MAXN], lowcost[MAXN];  
  10. bool visit[MAXN];  
  11. int nodenum, sum;  
  12.   
  13. void prim()  
  14. {  
  15.     int temp, k;  
  16.     sum = 0;  
  17.     memset(visit, falsesizeof(visit)); //初始化visit  
  18.     visit[1] = true;  
  19.     for(int i = 1; i <= nodenum; ++i) //初始化lowcost[i]  
  20.         lowcost[i] = map[1][i];  
  21.     for(int i = 1; i <= nodenum; ++i)//找生成树集合点集相连最小权值的边  
  22.     {  
  23.         temp = INF;  
  24.         for(int j = 1; j <= nodenum; ++j)  
  25.             if(!visit[j] && temp > lowcost[j])  
  26.                 temp = lowcost[k = j];  
  27.         if(temp == INF) break;  
  28.         visit[k] = true//加入最小生成树集合  
  29.         sum += temp;//记录权值之和  
  30.         for(int j = 1; j <= nodenum; ++j) //更新lowcost数组  
  31.             if(!visit[j] && lowcost[j] > map[k][j])  
  32.                 lowcost[j] = map[k][j];  
  33.     }  
  34. }  
  35.   
  36. int main()  
  37. {  
  38.     int a, b, cost, edgenum;  
  39.     while(scanf("%d", &nodenum) && nodenum)  
  40.     {  
  41.         memset(map, INF, sizeof(map));  
  42.         edgenum = nodenum * (nodenum - 1) / 2;  
  43.         for(int i = 1; i <= edgenum; ++i) //输入边的信息  
  44.         {  
  45.             scanf("%d%d%d", &a, &b, &cost);  
  46.             if(cost < map[a][b])  
  47.                 map[a][b] = map[b][a] = cost;  
  48.         }  
  49.         prim();  
  50.         printf("%d\n", sum); //最小生成树权值之和  
  51.     }  
  52.     return 0;  
  53. }  
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园整体解决方案是响应国家教育信息化政策,结合教育改革和技术创新的产物。该方案以物联网、大数据、人工智能和移动互联技术为基础,旨在打造一个安全、高效、互动且环保的教育环境。方案强调从数字化校园向智慧校园的转变,通过自动数据采集、智能分析和按需服务,实现校园业务的智能化管理。 方案的总体设计原则包括应用至上、分层设计和互联互通,确保系统能够满足不同用户角色的需求,并实现数据和资源的整合与共享。框架设计涵盖了校园安全、管理、教学、环境等多个方面,构建了一个全面的校园应用生态系统。这包括智慧安全系统、校园身份识别、智能排课及选课系统、智慧学习系统、精品录播教室方案等,以支持个性化学习和教学评估。 建设内容突出了智慧安全和智慧管理的重要性。智慧安全管理通过分布式录播系统和紧急预案一键启动功能,增强校园安全预警和事件响应能力。智慧管理系统则利用物联网技术,实现人员和设备的智能管理,提高校园运营效率。 智慧教学部分,方案提供了智慧学习系统和精品录播教室方案,支持专业级学习硬件和智能化网络管理,促进个性化学习和教学资源的高效利用。同时,教学质量评估中心和资源应用平台的建设,旨在提升教学评估的科学性和教育资源的共享性。 智慧环境建设则侧重于基于物联网的设备管理,通过智慧教室管理系统实现教室环境的智能控制和能效管理,打造绿色、节能的校园环境。电子班牌和校园信息发布系统的建设,将作为智慧校园的核心和入口,提供教务、一卡通、图书馆等系统的集成信息。 总体而言,智慧校园整体解决方案通过集成先进技术,不仅提升了校园的信息化水平,而且优化了教学和管理流程,为学生、教师和家长提供了更加便捷、个性化的教育体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值