一、前言
机器学习的寻找最优超参数是个老大难问题,scikit-learn提供了网格搜索GridSearchCV和随机搜索RandomizedSearchCV这两个函数来帮助寻找这些超参数。
网格搜索的本质就是对参数空间形成的所有参数组合进行一个个的尝试,然后选出得分最高的那个,可能会忽略这些组合以外的参数,同时随着参数的增多,计算量也会指数增加。
随机搜索是对参数的随机搜索,但没有充分利用搜索空间的结构。
skopt是一个超参数优化库,包括随机搜索、贝叶斯搜索、决策森林和梯度提升树等,用于辅助寻找机器学习算法中的最优超参数。
二、pip下载失败
pip install skopt

三、解决办法
- 先安装
scikit-optimize
pip install scikit-optimize

-
后直接在终端中安装
skopt成功 -
若不成功,安装
git clone https://bitbucket.org/stanmarkov/skopt/
- 转到skopt目录,执行
pip install --upgrade --user -r requirements.txt -e .
requirements.txt文件用于记录依赖包和版本号,安装其依赖包。
- 安装成功!
文章介绍了skopt包的作用,它是用于超参数优化的库,包含多种搜索策略。当使用pip安装skopt失败时,提供了备选方案:首先尝试安装scikit-optimize,如果仍然失败,则通过git克隆源代码并手动安装其依赖。
2102

被折叠的 条评论
为什么被折叠?



