【机器学习】机器学习实验三:集成算法1(详细代码展示)

一、实验介绍

1.1 简单介绍

AdaBoost 和 Random Forest 算法的原理

1.2 Breast Cancer 数据实验

  1. 对 Breast Cancer 数据进行探索性数据分析;

  2. 数据预处理

  3. 分别以决策树、逻辑回归、SVM 为基函数,利用网格搜索等方法寻找不同基函数下 AdaBoost 算法的最优参数。利用 Precision、Recall、F1 和 Auc 等指标评价模型,探究和对比不同基函数下的
    AdaBoost 算法性能

  4. 对比以决策树为基函数的 AdaBoost、Random Forest 以及 Lars算法在 Breast Cancer 分类数据上的重要特征,得出影响 Breast Cancer分类的关键因素。

1.3 Boston 数据实验

  1. 对 Boston 房价数据进行探索性数据分析

  2. 数据预处理

  3. R 2 R^2 R2、MSE、MAE 等指标为评价标准,探究 Random Forest算法的参数对模型性能的影响

  4. 对单棵决策树以及以决策树为基函数的集成算法(AdaBoost,Random Forest)进行性能对比,探索相较于单模型而言,集成学习的特点。

二、项目地址

这里只举例第一个数据集:

https://mbd.pub/o/bread/ZJWbkp9v

在这里插入图片描述

三、算法结果展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值