【计算机视觉 | 目标检测】Object query的理解

以下是Object query的几个常见理解:

一、理解1

在目标检测中,Object Query可以理解为查询对象,是用于检测任务中对每个目标进行描述的一种方式。它是Transformer中的一种重要结构,可以将检测任务转化为对预测结果与特征图的相似性进行计算。

在DETR中,每个Object Query都可以看作是一个目标的表示,它与预测结果的每个位置进行相似性比较,从而找到最匹配的预测结果。

具体来说,DETR模型中的Object Query是由Transformer Decoder的输出层生成的。在Decoder中,每个输出位置都被分配给一个Object Query,其向量表示可以看作是对目标类别和位置的编码。在预测时,每个Object Query与Encoder输出的特征图进行匹配,以确定每个Object Query应该与特征图中的哪个位置相关联。然后,使用RoI Align从特征图中提取与每个Object Query相关的区域特征,最终生成与每个Object Query对应的检测结果。

总的来说,Object Query是DETR模型中用于描述每个目标的一种方式,通过与Encoder输出的特征图匹配并使用RoI Align提取区域特征,可以获得对目标位置和类别的准确描述,进而实现目标检测。

二、理解2

Object query 是 DETR 中的一个重要概念,是指用于检测模型输出检测目标的预测框的一个向量表示。

在 DETR 中,Object query 是由 transformer 解码器产生的,它由一组预定义的向量组成,每个向量代表一个预测框。这些向量可以被视为检测模型的输出类别和空间信息的结合,其中类别信息用于区分不同的目标,而空间信息则描述了目标在图像中的位置。

在检测阶段,DETR 的解码器生成了一组 object query 向量,然后将它们与编码器的输出特征图进行注意力匹配。通过对注意力匹配结果进行加权和操作,DETR 可以得到每个预测框的特征表示。这些特征表示被用于计算预测框的类别和位置。

Object query 的设计是 DETR 的一个重要贡献,它解决了传统目标检测方法中需要预先设定 anchor box 的问题。传统目标检测方法中,anchor box 的大小和位置是预先设定的,这样就可能会导致一些目标无法被恰当地覆盖。而 DETR 中使用 object query 向量代替 anchor box,可以在不依赖于预先设定 anchor box 的情况下进行目标检测,从而更好地适应不同大小和形状的目标。

三、理解3

在目标检测中,Object query(物体查询)是指在检测过程中用来查询目标的特征向量。一般来说,Object query是由Transformer Decoder的最后一层产生的。

对于每个查询向量,它会对特定位置的特征图进行查询,从而得到与该查询向量最相似的特征位置,也就是目标位置,同时得到该位置对应的类别概率。

因此,Object query在目标检测中扮演着很重要的角色,它可以帮助我们快速地检测目标并确定它们的位置和类别。

### 关于国外小目标检测方面的学术论文 对于寻找有关国外小目标检测的学术论文,可以考虑以下几个方面来定位合适的资源: 在计算机视觉领域,小目标检测是一个重要的研究方向。该问题主要集中在如何提高算法对图像中小尺寸物体识别的能力。由于这些对象通常具有较低分辨率和较少特征点,在复杂背景下容易被忽略或者误分类。 为了获取最新的研究成果,建议关注顶级会议如CVPR (Conference on Computer Vision and Pattern Recognition),ICCV (International Conference on Computer Vision) 和 ECCV (European Conference on Computer Vision)[^2]。 这些会议上发表的文章往往代表了当前最前沿的技术进展。 另外,也可以通过Google Scholar 或者 IEEE Xplore 数据库进行关键词搜索。“Foreign Small Target Detection”, “Tiny Object Detection”,以及“Small Scale Object Recognition”都是有效的检索词组合。特别注意查看文章摘要中的实验部分是否涉及跨国数据集测试,这有助于理解不同地区场景下的性能差异[^3]。 ```python import requests from bs4 import BeautifulSoup def search_papers(query): base_url = 'https://scholar.google.com/scholar?q=' url = f"{base_url}{query.replace(' ', '+')}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') results = [] for item in soup.select('.gs_r'): title = item.select_one('.gs_rt').get_text(strip=True) link = item.select_one('a')['href'] if item.select_one('a') else '' snippet = item.select_one('.gs_rs').get_text(strip=True)[:150]+'...'if item.select_one('.gs_rs')else'' result = { "title": title, "link": link, "snippet": snippet } results.append(result) return results[:5] papers = search_papers("foreign small target detection") for paper in papers: print(f"Title: {paper['title']}\nLink: {paper['link']}\nSnippet:{paper['snippet']}\n\n") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值