文章目录
一、问题背景
近年来企业外部环境越来越不确定,复杂多变的外部环境,让企业供应链面临较多难题。需求预测作为企业供应链的第一道防线,重要程度不言而喻,然而需求预测受多种因素的影响,导致预测准确率普遍较低,因此需要更加优秀的算法来解决这个问题。需求预测是基于历史数据和未来的预判得出的有理论依据的结论,有利于公司管理层对未来的销售及运营计划、目标,资金预算做决策参考;其次,需求预测有助于采购计划和安排生产计划的制定,减少受业务波动的影响。如果没有需求预测或者预测不准,公司内部很多关于销售、采购、财务预算等决策都只能根据经验而来了,会导致对市场预测不足,产生库存和资金的积压或不足等问题,增加企业库存成本。
二、数据说明
附件中的训练数据(order_train1.csv)提供了国内某大型制造企业在2015年9月1日至2018年12月20日面向经销商的出货数据(格式见表1),反应了该企业产品在不同销售区域的价格和需求等信息,包括:
- order_date(订单日期)
- sales_region_code(销售区域编码)
- item_code(产品编码)
- first_cate_
本文探讨了在复杂环境下,企业如何通过需求预测优化供应链管理。通过对历史订单数据的深入分析,研究了产品价格、销售区域、销售方式、产品类别、时间周期、节假日和促销活动等因素对需求量的影响。接着,建立了数学模型预测未来3个月的月需求量,并分析了预测粒度(天、周、月)对精度的影响。
订阅专栏 解锁全文
925

被折叠的 条评论
为什么被折叠?



