【计算机视觉 | 目标检测】目标检测常用数据集及其介绍(七)

本文介绍了15个目标检测数据集,包括Cops-Ref、FAT、GEN1 Detection等,涵盖了机器人技术、遥感图像、微生物菌落、行人检测、杂货分类、光场数据等多个领域,为深度学习和目标检测研究提供了丰富资源。
摘要由CSDN通过智能技术生成

一、Cops-Ref

Cops-Ref 是一个在引用表达理解的背景下进行视觉推理的数据集,具有两个主要特征。

在这里插入图片描述

二、FAT (Falling Things)

Falling Things (FAT) 是一个数据集,用于推进机器人技术背景下物体检测和 3D 姿态估计的最先进水平。 它由生成的真实感图像组成,并为 60k 图像中的所有对象提供准确的 3D 姿势注释。

21 个家居物品的 6 万张带注释的照片取自 YCB 物品集。 对于每个图像,数据集包含所有对象的 3D 姿势、每像素类分割以及 2D/3D 边界框坐标。

在这里插入图片描述

三、GEN1 Detection (Prophesee GEN1 Automotive Detection Dataset)

Prophesee 的 GEN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值