文章目录
- 一、CBC (Complete Blood Count)
- 二、CURE-TSD (CURE Traffic Sign Detection)
- 三、DUO (Detecting Underwater Objects)
- 四、Duke Breast Cancer MRI (Dynamic contrast-enhanced magnetic resonance images of breast cancer patients with tumor locations)
- 五、HS-SOD (HyperSpectral Salient Object Detection Dataset)
- 六、Heavy Snowfall (DENSE)
- 七、LOGO-Net
- 八、MJU-Waste
- 九、OpenTTGames
- 十、Prophesee GEN4 Dataset (Prophesee 1 Megapixel Automotive Detection Dataset)
- 十一、RailEye3D Dataset
- 十二、SpaceNet 1 (SpaceNet 1: Building Detection v1)
- 十三、SpaceNet MVOI (SpaceNet Multi-View Overhead Imagery Dataset)
- 十四、Stream-51
- 十五、TNCR Dataset (Table Net Detection and Classification Dataset)
一、CBC (Complete Blood Count)
全血细胞计数 (CBC) 数据集包含 360 个血涂片图像及其注释文件,分为训练集、测试集和验证集。 训练文件夹包含 300 张带有注释的图像。 测试和验证文件夹均包含 60 张带有注释的图像。 我们对原始数据集进行了一些修改,以准备此 CBC 数据集,其中一些图像注释文件包含的红细胞 (RBC) 比实际值低,并且一个注释文件根本不包含任何 RBC,尽管细胞涂片图像包含 RBC 。 因此,我们清除了所有错误文件并将数据集分为三个部分。 在360张涂片图像中,首先将300张带注释的血细胞图像作为训练集,然后将其余60张带注释的图像作为测试集。 由于数据短缺,训练集的子集用于准备验证集,其中包含 60 张带注释的图像。

二、CURE-TSD (CURE Traffic Sign Detection)
基于与现实环境和系统中可能出现的对手相对应的模拟挑战性条件。
本文介绍了15个目标检测数据集,包括CBC、CURE-TSD、DUO等,涵盖了医疗、交通、水下、恶劣天气等多种应用场景,用于推动计算机视觉和深度学习的研究。
订阅专栏 解锁全文
395

被折叠的 条评论
为什么被折叠?



