文章目录
- 一、MIS-Check Dam (Minor Irrigation Structures- Check Dam)
- 二、MLGESTURE DATASET
- 三、Marine Microalgae Detection in Microscopy Images
- 四、MuCeD
- 五、NAO (Natural Adversarial Object)
- 六、NOD (Night Object Detection)
- 七、Open Images V7
- 八、PESMOD (PExels Small Moving Object Detection)
- 九、POG (People On Grass)
- 十、Parcel3D
- 十一、Retail50K
- 十二、S-ODv2 (SeaDronesSee-Object Detection v2)
- 十三、SIDOD
- 十四、SOD4SB (Small Object Detection for Spotting Birds)
- 十五、SSL (Small Size League)
一、MIS-Check Dam (Minor Irrigation Structures- Check Dam)
小型灌溉结构检查坝数据集是一个公共数据集,由领域专家使用 Google 静态地图中的图像进行注释,用于实例分割和对象检测任务。
数据集的 Google 驱动器链接:https://drive.google.com/drive/u/2/folders/16-XNaD6Cfbec7cpJB9_raYz8tl0CEQzZ

二、MLGESTURE DATASET
MlGesture 是一个用于手势识别任务的数据集,记录在汽车中,在两个不同的视点使用 5 种不同的传感器类型。 该数据集包含来自 24 位参与者的 1300 多个手势视频,并具有 9 个不同的手势符号。 一个带有五个不同摄像头的传感器集群安装在驾驶员前方的仪表板中央。 第二个传感器组安装在天花板上,可以直视下方。
本文介绍了多个目标检测数据集,包括MIS-Check Dam的小型灌溉结构,MLGesture的手势识别,海洋微藻检测,MuCeD的细胞检测,NAO和NOD的低光照条件物体检测,Open Images的大规模图像数据,PESMOD的移动物体检测,POG的人群检测,Parcel3D的地块图像,Retail50K的零售环境检测,S-ODv2的海下物体检测,SIDOD的合成图像数据,SOD4SB的小型鸟类检测,以及SSL的机器人足球比赛对象检测。这些数据集覆盖了各种应用场景,适合不同的目标检测研究和开发。
订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



