【计算机视觉 | 目标检测】目标检测常用数据集及其介绍(十五)

本文介绍了多个目标检测数据集,如STN PLAD,包含高压电力线组件的高分辨率图像;Satlas,大规模遥感数据集;Street Dataset,具有非独立同分布和不平衡数据的街景图像;以及涵盖破裂手机屏幕的Cracked Mobile Screen Dataset等。这些数据集在计算机视觉和人工智能领域中用于训练和评估目标检测算法。
摘要由CSDN通过智能技术生成

一、STN PLAD (STN Power Line Assets Dataset)

STN PLAD 是多个高压电力线组件的高分辨率真实图像数据集。 它有 2,409 个带注释的对象,分为五类:输电塔、绝缘体、垫片、塔板和 Stockbridge 阻尼器,它们的大小(分辨率)、方向、照明、角度和背景各不相同。

特性
图片尺寸:5472×3078或5472×3648
图片总数:133
实例总数:2409
每张图像的平均实例数:18.1
对象类别数量(不同资产):5
其他统计:

抽象的
例如,许多电力公司正在使用无人机来执行检查过程,而不是让工人攀爬高压电力线塔而将其置于危险之中。 检查的一项关键任务是对输电线路中的资产进行检测和分类。 然而,与电力线资产相关的公共数据很少,阻碍了该领域的更快发展。 这项工作提出了电力线资产数据集,其中包含多个高压电力线组件的高分辨率和真实图像。 它有 2,409 个带注释的对象,分为五类:输电塔、绝缘体、垫片、塔板和 Stockbridge 阻尼器,它们的大小(分辨率)、方向、照明、角度和背景各不相同。 这项工作还对流行的深度物体检测方法进行

VEDAI数据集是一个用于目标检测的遥感图像数据集。在该数据集上,SuperYOLO模型实现了75.09%的准确率(以mAP50计),比其他大型模型如YOLOv5l、YOLOv5x和RS设计的YOLOrs高出10%以上。同时,SuperYOLO的参数大小和GFLOPs比YOLOv5x少了约18倍和3.8倍。这表明我们提出的模型在精度和速度之间取得了有利的权衡。\[1\] 在表一中,不同基线YOLO框架的模型大小和推理能力是以层数、参数大小和GFLOPs来评价的。YOLOv4虽然实现了最好的检测性能,但它比YOLOv5s多了169层,参数大小是YOLOv5s的7.4倍,GFLOPs是YOLOv5s的7.2倍。相比之下,YOLOv5s虽然mAP略低于YOLOv4和YOLOv5m,但它的层数、参数大小和GFLOPs都比其他模型小很多。因此,在实际应用中,更容易在船上部署YOLOv5s来实现实时性能。这证实了将YOLOv5s作为基线检测框架的合理性。\[2\] 最近,多模态数据在许多实际应用场景中被广泛利用,包括视觉问题回答、自动驾驶汽车、显著性检测和遥感分类。人们发现,结合多模态数据的内部信息可以有效地传递互补的特征,避免单一模态的某些信息被遗漏。\[3\] #### 引用[.reference_title] - *1* *2* *3* [Super Yolo论文翻译](https://blog.csdn.net/qq_41048761/article/details/130304993)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值