文章目录
一、Virtual KITTI
Virtual KITTI 是一个逼真的合成视频数据集,旨在学习和评估用于多种视频理解任务的计算机视觉模型:对象检测和多对象跟踪、场景级和实例级语义分割、光流和深度估计。
Virtual KITTI 包含 50 个高分辨率单目视频(21,260 帧),这些视频是在不同成像和天气条件下从城市环境中的五个不同虚拟世界生成的。 这些世界是使用 Unity 游戏引擎和新颖的真实到虚拟克隆方法创建的。 这些逼真的合成视频会自动、准确且完整地进行 2D 和 3D 多对象跟踪注释,并在像素级别上带有类别、实例、流和深度标签(参见下面的下载链接)。

二、PASCAL VOC 2007
PASCAL VOC 2007 是用于图像识别的数据集。 已选择的二十个对象类别是:
人:人动物:鸟、猫、牛、狗、马、羊交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器
该数据集可用于图像分类和对象检测任务。
本文详细介绍了计算机视觉领域中15个重要的语义分割数据集,包括Virtual KITTI、PASCAL VOC 2007、PartNet等,涵盖了合成视频、图像识别、3D对象、街道场景、医学图像等多个应用场景,对于理解和推动语义分割技术的发展具有重要意义。
订阅专栏 解锁全文
328

被折叠的 条评论
为什么被折叠?



