【VisDrone|目标检测】保姆级教程:Cascade RCNN训练VisDrone数据集的日志信息+评估结果(五)

本文提供了一篇关于使用Cascade RCNN在VisDrone数据集上进行目标检测的详细教程。日志显示,每个epoch大约需要10分钟,学习率较高,各阶段损失及准确率逐步降低。在训练了50个epoch后,最佳的coco/bbox_mAP达到0.3770。
摘要由CSDN通过智能技术生成

一、日志信息

看一段日志信息:

在这里插入图片描述
11/02 19:23:05 - mmengine - INFO - Epoch(train) [1][850/3236]: 表示当前仍处于第一个训练周期,已经处理了850个批次(总共有3236个批次)的数据。

“lr: 2.0000e-02”: 学习率(learning rate)为2.0000e-02,这是相对较大的学习率,用于控制模型参数的更新。

“eta: 2:00:48”: 预计还需要2小时、48分钟才能完成当前训练周期。

“time: 0.1907”: 当前批次的训练时间为0.1907秒,相对较短。

“data_time: 0.0020”: 数据加载所用的时间为0.0020秒,非常快速。

“memory: 8446”: 显示当前使用的内存量,为8446MB(8.446 GB)。

“loss: 1.9492”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值