一、日志信息
看一段日志信息:

11/02 19:23:05 - mmengine - INFO - Epoch(train) [1][850/3236]: 表示当前仍处于第一个训练周期,已经处理了850个批次(总共有3236个批次)的数据。
“lr: 2.0000e-02”: 学习率(learning rate)为2.0000e-02,这是相对较大的学习率,用于控制模型参数的更新。
“eta: 2:00:48”: 预计还需要2小时、48分钟才能完成当前训练周期。
“time: 0.1907”: 当前批次的训练时间为0.1907秒,相对较短。
“data_time: 0.0020”: 数据加载所用的时间为0.0020秒,非常快速。
“memory: 8446”: 显示当前使用的内存量,为8446MB(8.446 GB)。
“loss: 1.9492”
本文提供了一篇关于使用Cascade RCNN在VisDrone数据集上进行目标检测的详细教程。日志显示,每个epoch大约需要10分钟,学习率较高,各阶段损失及准确率逐步降低。在训练了50个epoch后,最佳的coco/bbox_mAP达到0.3770。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



