文章目录
- 1.9 Model-free Test Time Adaptation for Out-Of-Distribution Detection
- 1.10 Small and Dim Target Detection in IR Imagery: A Review
- 1.11 Domain-Specific Deep Learning Feature Extractor for Diabetic Foot Ulcer Detection
- 1.12 RelVAE: Generative Pretraining for few-shot Visual Relationship Detection
- 1.13 Next-gen traffic surveillance: AI-assisted mobile traffic violation detection system
- 1.14 Ransomware Detection and Classification using Machine Learning
- 1.15 After-Stroke Arm Paresis Detection using Kinematic Data
- 1.16 Empowering COVID-19 Detection: Optimizing Performance Through Fine-Tuned EfficientNet Deep Learning Architecture
1.9 Model-free Test Time Adaptation for Out-Of-Distribution Detection
非分布检测的无模型测试时间自适应
https://arxiv.org/abs/2311.16420
分发外(OOD)检测对于ML模型的可靠性至关重要。大多数现有的OOD检测方法从给定的分布数据集中学习一个固定的决策标准,并普遍应用它来决定数据点是否是OOD。最近的工作~\cite{fang 2022 is}表明,仅给定分布内数据,不可能在没有额外假设的情况下可靠地检测OOD数据。基于测试时间自适应方法的理论成果和最新研究成果,本文提出了一种非参数测试时间自适应框架,用于测试时间自适应检测(\abbr)。与传统方法不同,\abbr在测试过程中利用在线测试样本进行模型自适应,增强了对变化的数据分布的适应性。该框架将检测到的OOD实例纳入决策,降低误报率,特别是当ID和OOD分布重叠显着。我们通过对多个OOD检测基准的综合实验证明了\abbr的有效性,广泛的实证研究表明,\abbr显着提高了OOD检测的性能比最先进的方法。具体来说,与高级方法相比,CIFAR-10基准测试的误报率(FPR 95)降低了23.23美元,ImageNet-1 k基准测试降低了38美元。最后,从理论上验证了\abbr.
1.10 Small and Dim Target Detection in IR Imagery: A Review
红外图像中弱小目标检测的研究进展
https://arxiv.org/abs/2311.16346
虽然使用传统图像处理和机器学习算法进行目标检测已经取得了重大进展,但在IR域中探索小目标和微弱目标检测是一个相对较新的研究领域。大多数弱小目标检测方法都是从传统的目标检测算法中衍生出来的,尽管有一些改动。红外图像中弱小目标的检测是一项复杂的任务。这是因为这些目标通常需要独特的特征,背景是混乱的不清晰的细节,并且由于热力学的波动,场景的IR特征可能会随着时间的推移而变化。本次审查的主要目的是突出这一领域取得的进展。这是红外图像中小目标和微弱目标检测领域的第一篇综述,涵盖了从传统图像处理到基于深度学习的尖端方法的各种方法。作者还介绍了这种方法的分类。有两种主要类型的方法:使用多个帧进行检测的方法和基于单帧的检测技术。基于单帧的检测技术包含多种方法,从传统的基于图像处理的方法到更先进的深度学习方法。我们的研究结果表明,深度学习方法的性能优于传统的基于图像处理的方法。此外,还提供了各种现有数据集的综合汇编。此外,本次审查确定了现有技术中的差距和局限性,为这一领域的未来研究和发展铺平了道路。
1.11 Domain-Specific Deep Learning Feature Extractor for Diabetic Foot Ulcer Detection
用于糖尿病足溃疡检测的特定领域深度学习特征提取器
https://arxiv.org/abs/2311.16312
糖尿病足溃疡(DFU)是一种需要持续监测和评估治疗的疾病。DFU患者人数正在上升,很快将超过可用的卫生资源。DFU伤口的自主监测和评估是医疗保健中急需的领域。在本文中,我们评估和识别最准确的特征提取器,这是开发深度学习伤口检测网络的核心基础。为了进行评估,我们使用了公开可用的DFU2020数据集上的mAP和F1评分。UNet和EfficientNetb3特征提取器的组合在所比较的14个网络中获得了最佳评价。UNet和Efficientnetb3可用作开发全面DFU领域特定自主伤口检测管道的分类器。
1.12 RelVAE: Generative Pretraining for few-shot Visual Relationship Detection
RelVAE:用于Few-Shot视觉关系检测的生成性预训练
https://arxiv.org/abs/2311.16261
视觉关系是复杂的多模态概念,在人类感知世界的方式中发挥着重要作用。由于其复杂性,高质量,多样性和大规模的视觉关系数据集仍然缺乏。为了克服这个数据障碍,我们选择专注于Few-Shot视觉关系检测(VRD)的问题,一个迄今为止被社区忽视的设置。在这项工作中,我们提出了第一个预训练方法的Few-Shot谓词分类,不需要任何注释的关系。我们实现这一点,通过引入一个生成模型,能够捕捉潜在空间内的关系的语义,视觉和空间信息的变化,后来利用其表示,以实现高效的Few-Shot分类。我们构建了Few-Shot训练分割,并在VG 200和VRD数据集上进行了定量实验,其中我们的模型优于基线。最后,我们试图解释模型的决定进行各种定性实验。
1.13 Next-gen traffic surveillance: AI-assisted mobile traffic violation detection system
下一代交通监控:人工智能辅助的移动交通违章检测系统
https://arxiv.org/abs/2311.16179
道路交通事故造成重大的全球公共卫生问题,导致伤亡和车辆损坏。每天约有130万人因交通事故丧生[世界卫生组织,2022]。解决这个问题需要准确的交通违法检测系统,以确保遵守法规。人工智能算法的集成,利用机器学习和计算机视觉,促进了精确交通规则执行的发展。本文阐述了计算机视觉和机器学习如何创建用于检测各种交通违法行为的鲁棒算法。我们的模型,能够识别六种常见的交通违规行为,检测闯红灯的行为,非法使用故障车道,违反车辆跟随距离,违反有标记的人行横道的法律,非法停车,并在有标记的人行横道上停车。利用在线交通录像和自行安装的仪表盘摄像头,我们应用YOLOv5算法的检测模块来识别汽车、行人和交通标志等交通主体,并应用strong SORT算法进行连续帧间跟踪。六个离散算法分析代理的行为和轨迹,以检测违规行为。随后,识别模块提取车辆ID信息,例如车牌,以生成发送给相关当局的违章通知。
1.14 Ransomware Detection and Classification using Machine Learning
基于机器学习的勒索软件检测与分类
https://arxiv.org/abs/2311.16143
恶意攻击、恶意软件和各种勒索软件构成了网络安全威胁,对各个行业和企业的计算机结构、服务器以及移动和Web应用程序造成了相当大的破坏。这些安全问题非常重要,必须立即解决。勒索软件检测和分类对于确保快速反应和预防至关重要。该研究使用XGBoost分类器和随机森林(RF)算法来检测和分类勒索软件攻击。这种方法涉及分析勒索软件的行为,并提取有助于区分不同勒索软件家族的相关特征。在勒索软件攻击数据集上对模型进行了评估,并证明了它们在准确检测和分类勒索软件方面的有效性。结果表明,XGBoost分类器,随机森林分类器,可以有效地检测和分类不同的勒索软件攻击,具有很高的准确性,从而为增强网络安全提供了一个有价值的工具。
1.15 After-Stroke Arm Paresis Detection using Kinematic Data
利用运动学数据检测卒中后上肢瘫痪
https://arxiv.org/abs/2311.16138
本文提出了一种利用运动学数据检测单侧手臂麻痹/无力的方法。我们的方法采用时间卷积网络和递归神经网络,由知识蒸馏指导,我们使用连接到身体的惯性测量单元来捕获运动学信息,如动作过程中身体关节的加速度,旋转和屈曲。然后分析这些信息以识别身体动作和模式。通过知识共享,我们提出的网络实现了97.99%的瘫痪检测准确率,动作分类准确率为77.69%。此外,通过结合因果推理,我们可以获得对患者病情的更多见解,例如基于机器学习结果的Fugl-Meyer评估评分或损伤水平。总的来说,我们的方法展示了使用运动学数据和机器学习检测手臂瘫痪/无力的潜力。结果表明,我们的方法可能是临床医生和医疗保健专业人员与这种情况的患者一起工作的有用工具。
1.16 Empowering COVID-19 Detection: Optimizing Performance Through Fine-Tuned EfficientNet Deep Learning Architecture
支持新冠肺炎检测:通过微调的EfficientNet深度学习架构优化性能
https://arxiv.org/abs/2311.16593
全球COVID-19大流行深刻影响了全球个人的健康和日常体验。这是一种高度传染性的呼吸道疾病,需要及早准确发现,以遏制其快速传播。最初的检测方法主要围绕着确定冠状病毒的遗传组成,检测率相对较低,需要时间密集的程序。为了应对这一挑战,专家们建议使用放射图像,特别是胸部X光,作为诊断协议中的一种有价值的方法。这项研究调查了利用放射成像(X射线)和深度学习算法快速准确地识别COVID-19患者的潜力。所提出的方法通过在各种已建立的迁移学习模型上使用适当的层进行微调来提高检测精度。该实验是在包含2000张图像的COVID-19 X射线数据集上进行的。EfficientNetB 4模型的准确率达到了令人印象深刻的100%。经过微调的EfficientNetB 4获得了出色的准确性分数,展示了其作为强大的COVID-19检测模型的潜力。此外,EfficientNetB 4在使用包含4,350张图像的胸部X射线数据集识别肺部疾病方面表现出色,准确率为99.17%,精确率为99.13%,召回率为99.16%,f1分数为99.14%。这些结果突出了微调迁移学习通过医学成像,特别是X射线图像进行有效肺部检测的前景。这项研究为放射科医生提供了一种有效的手段,帮助快速准确地诊断COVID-19,并为医疗保健专业人员准确识别受影响的患者提供了宝贵的帮助。
1357

被折叠的 条评论
为什么被折叠?



