THOMAS’ CALCULUS Exercises

6.2 (45)在这里插入图片描述

Proof:
W ( t ) ′ = π ( ( f − 1 ( f ( t ) ) ) 2 − a 2 ) f ′ ( t ) = π ( t 2 − a 2 ) f ′ ( t ) W'_{(t)}=\pi( (f^{-1}(f(t)))^2 - a^2)f'(t)=\pi(t^2-a^2)f'(t) W(t)=π((f1(f(t)))2a2)f(t)=π(t2a2)f(t)

S ( t ) = 2 π f ( t ) ∫ a t x d x − 2 π ∫ a t x f ( x ) d x = π f ( t ) [ x 2 ] a t − 2 π ∫ a t x f ( x ) d x = π f ( t ) t 2 − π f ( t ) a 2 − 2 π ∫ a t x f ( x ) d x S_{(t)}=2\pi f(t)\int^t_a{x}{\rm d}x -2\pi\int^t_axf(x){\rm d}x = \pi f(t)[x^2]^t_a - 2\pi\int^t_axf(x){\rm d}x=\pi f(t)t^2-\pi f(t)a^2- 2\pi\int^t_axf(x){\rm d}x S(t)=2πf(t)atxdx2πatxf(x)dx=πf(t)[x2]at2πatxf(x)dx=πf(t)t2πf(t)a22πatxf(x)dx
==>
S ( t ) ′ = π f ′ ( t ) t 2 + 2 π t f ( t ) − π a 2 f ′ ( t ) − 2 π t f ( t ) = π ( t 2 − a 2 ) f ′ ( t ) S'_{(t)}=\pi f'(t)t^2+2\pi tf(t) - \pi a^2f'(t)-2\pi tf(t)=\pi(t^2-a^2)f'(t) S(t)=πf(t)t2+2πtf(t)πa2f(t)2πtf(t)=π(t2a2)f(t)
==>
W ( t ) ′ = S ( t ) ′ W'_{(t)}=S'_{(t)} W(t)=S(t) .

W ( a ) = S ( a ) = 0 W(a)=S(a)=0 W(a)=S(a)=0

Therefore, W ( t ) = S ( t ) W(t)=S(t) W(t)=S(t) for all t [a, b].

I found another washer method which can be proof been equivalent to the above two methods.

W ( t ) = ∫ f ( a ) f ( t ) π ( x 2 − a 2 ) d y W(t)=\int^{f(t)}_{f(a)}\pi (x^2-a^2){\rm d}y W(t)=f(a)f(t)π(x2a2)dy

y = f ( x ) y=f(x) y=f(x) => d y = f ′ ( x ) d x dy=f'(x)dx dy=f(x)dx
=>
W ( t ) = = ∫ a t π ( x 2 − a 2 ) f ′ ( x ) d x W(t)==\int^t_a\pi (x^2-a^2)f'(x){\rm d}x W(t)==atπ(x2a2)f(x)dx
=>
W ( t ) ′ = π ( t 2 − a 2 ) f ′ ( t ) W'_{(t)}=\pi(t^2-a^2)f'(t) W(t)=π(t2a2)f(t)

7.2 - 32
在这里插入图片描述
Solution:

d y d t = r − k y \frac{dy}{dt}=r-ky dtdy=rky => 1 r − k y d y = d t \frac{1}{r-ky}dy=dt rky1dy=dt=> ∫ 1 r − k y d y = ∫ d t \int{\frac{1}{r-ky}}{\rm d}y=\int{\rm d}t rky1dy=dt => 1 k l n ( r − k y ) = t + C \frac{1}{k}ln(r-ky)=t+C k1ln(rky)=t+C => y = 1 k ( r − c e − k t ) y=\frac{1}{k}(r-ce^{-kt}) y=k1(rcekt)

Alternatively:

Let z = r − k y z=r-ky z=rky. Then d z d t = − k d y d t = − k ( r − k y ) = − k z \frac{dz}{dt}=-k\frac{dy}{dt}=-k(r-ky)=-kz dtdz=kdtdy=k(rky)=kz. The equation d z d t = − k z \frac{dz}{dt}=-kz dtdz=kz has solution z = c e − k t z=ce^{-kt} z=cekt, so r − k y = c e − k t r-ky=ce^{-kt} rky=cekt and y = 1 k ( r − c e − k t ) y=\frac{1}{k}(r-ce^{-kt}) y=k1(rcekt)

Since y ( 0 ) = 1 k ( r − c ) = y 0 y(0)=\frac{1}{k}(r-c)=y_0 y(0)=k1(rc)=y0 , we have c = r − k y 0 c=r-ky_0 c=rky0 and thus
y = ( y 0 − r k ) e − k t + r k y=(y_0-\frac{r}{k})e^{-kt}+\frac{r}{k} y=(y0kr)ekt+kr

8-Advance Exercises
在这里插入图片描述
在这里插入图片描述

9.2
在这里插入图片描述
9-ad
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值