今天的第一个题目
首先题目的意思还是要解释一下
其中每一行的数据,第一个就是代表从当前到下一站的费用,第二个就是代表从当前到第二站的费用。以此类推
我们换一组比较大的数据
7
13 15 24 44 29 50
16 18 8 21 53
7 26 4 38
12 1 29
9 4
11
算法也是用的经典dp算法,只需要稍微改动点就可以
首先我们从第一个站点到第二个站点只有一种走法就是1-2,就是从第一站开始往前走一站
费用为data[1][1]=13
第二次我们需要到达第三站,我们有两种走法,从1-3或者2-3
如果我们选择第一种,从第一站开始往后走两站,费用为data[1][2]=15
如果我们选择第二种,从第二站往后走一站,费用为data[2][1]+从第一站到第二站的最短路=28
我们选择最小的,所以从第一站到第三站的最短路为15
然后再以此为基础继续往后走
最终的代码实现为:
#include<iostream>
using namespace std;
int data[202][202]={0};
int result[202]={0};
int ming(int n)
{
int m=data[1][n-1];//记录最小的值
for(int i=2;i<n;i++)
{
if(m>result[i]+data[i][n-i])
m=result[i]+data[i][n-i];
}
result[n]=m;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<n;i++)
for(int j=1;j<=n-i;j++)
cin>>data[i][j];
//赋初值,从第二个开始
result[2]=data[1][1];
for(int i=3;i<=n;i++)
{
ming(i);
}
cout<<result[n];
}