【零样本学习】Rethinking Knowledge Graph Propagation for Zero-Shot Learning

本文提出Dense Graph Propagation (DGP)模型,解决Zero-Shot Learning中知识图谱传播导致的性能降低问题。DGP通过直接连接节点与其祖先和后代,利用层次结构传播知识,同时采用基于距离的权重方案,减少信息稀释。通过两阶段训练,DGP提高了预训练CNN的适应性和性能,实验显示在ImageNet上取得最佳效果。
摘要由CSDN通过智能技术生成

Abstract

近年来,GCN在ZSL问题上取得了不错的效果,它关联在图结构上相关概念,使得能够泛化到unseen class。然而,由于多层GCN结构需要将知识传播到图中较远的节点(传递并吸收较远节点的知识),在每一层都要执行Laplacian平滑,会稀释知识导致性能降低。为了利用图结构的优势,同时防止较远节点导致的知识稀释问题,我们提出Dense Graph Propagation (DGP)模型(研究如何设计与较远节点的直接连边)。DGP模型通过这些直连边来利用知识图谱的层次图结构。这些连边是根据节点与其祖先和后代的关系添加的。为了进一步改进图中的信息传播,采用了一种权重方案,根据到节点之间的距离来对它们的贡献进行加权。DGP模型得到分类器参数后,采用两阶段训练方式来微调预训练的CNN特征提取网络。

Motivation

GCN模型通常被用于分类任务,先前的方法[1]是用回归的方式监督学习GCN参数。最近的研究表明,随着GCN层数的增加,由于每一层都要执行Laplacian平滑,特征向量会更加相似(类似Laplacian图像平滑的意思??),导致分类也更加容易。而回归的目的是在图中的节点之间交换信息,而且Laplacian平滑容易稀释信息而且不能够准确地回归。比如,当层数趋近于无穷时,所有信息都会被抹掉。
因此,方法[1]可能并不适合ZSL任务,而且为了避免平滑,GCN的层数应该更少,但是会导致知识不能很好地通过图来传播(1层GCN就只能利用它的邻接节点)。因此,我们提出一个稠密连接方案,节点直接连接到后代/祖先,以便提供较远处的信息。这些新增的连接使

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值