27、六边形架构与分层架构对比及 SOLID 原则应用

六边形架构与分层架构对比及 SOLID 原则应用

1. 六边形架构与分层架构的实现

在开发用户访问应用时,我们可以使用分层架构和六边形架构,下面来详细介绍它们的实现及差异。

1.1 分层架构与六边形架构的逻辑差异

在分层架构应用中,实现的方法逻辑与六边形架构有相似之处,但分层架构使用 UserDto 类,而六边形架构直接操作 User 领域实体类。按照领域驱动设计(DDD)方法,六边形架构将服务层的逻辑推到了领域六边形中,原本在服务层包含核心系统逻辑的方法,现在成为了领域六边形中 User 领域实体类的一部分。显著的区别在于,领域六边形不依赖任何东西,而在分层架构方法中,包含核心系统逻辑的服务层依赖数据层。

1.2 实现应用六边形

为了实现用户注册和登录的核心逻辑,我们在领域六边形中实现了 User 领域实体类。在应用六边形中,我们使用用例和输入输出端口来定义如何触发行为以及如何检索外部数据,具体步骤如下:
1. 定义 UserAccessUserCase 接口

public interface UserAccessUseCase {
    String createAccount(User user) throws Exception;
    String login(User user);
}

此接口支持创建账户

【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)内容概要:本文介绍了一种基于神经网络的数据驱动迭代学习控制(ILC)算法,用于解决具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车路径跟踪问题,并提供了完整的Matlab代码实现。该方法无需精确系统模型,通过数据驱动方式结合神经网络逼近系统动态,利用迭代学习机制不断提升控制性能,从而实现高精度的路径跟踪控制。文档还列举了大量相关科研方向和技术应用案例,涵盖智能优化算法、机器学习、路径规划、电力系统等多个领域,展示了该技术在科研仿真中的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事无人车控制、智能算法开发的工程技术人员。; 使用场景及目标:①应用于无人车在重复任务下的高精度路径跟踪控制;②为缺乏精确数学模型的非线性系统提供有效的控制策略设计思路;③作为科研复现算法验证的学习资源,推动数据驱动控制方法的研究应用。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注神经网络ILC的结合机制,并尝试在不同仿真环境中进行参数调优性能对比,以掌握数据驱动控制的核心思想工程应用技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值