9、FreeRTOS队列集:原理、应用与避坑指南

FreeRTOS队列集:原理、应用与避坑指南

1. 问题背景

在编写日益复杂的嵌入式应用程序时,有时需要从一个特定任务中阻塞多个FreeRTOS资源。例如,要编写一个程序,通过三个按钮获取GPIO输入,按钮按下时LED熄灭,释放时LED点亮,同时触发一些游戏事件。由于这是用于游戏,多个按钮可以同时按下。为了尽可能对按钮事件做出响应,将使用中断来检测GPIO信号的变化。

最初,可能会分配一个队列来发布所有按钮事件,但按钮触点可能会产生抖动,特别是金属触点的按钮。当游戏玩家想从另一个按钮激活智能炸弹时,单个队列可能会被一个按钮的抖动事件填满。由于ISR(中断服务程序)会将按钮事件排队,当队列满时事件将丢失(因为ISR在队列满时不能阻塞)。

为了避免队列因另一个按钮的抖动而变满,决定为每个按钮分配一个单独的消息队列。这样,如果某个有问题的按钮抖动过多,只会丢失该按钮的事件。但现在面临一个新问题,输入事件处理任务是一个单一任务,理想情况下,在循环开始时,该任务应阻塞,直到从这三个队列中的任何一个接收到事件。然而, xQueueReceive() 调用一次只能从一个队列接收数据。作为一种变通方法,可以对所有三个队列进行零超时轮询,但之后如果没有更多要处理的内容,希望暂停执行,以便为游戏代码的其余部分留出更多CPU时间。

2. 队列集的引入

为了解决在多个队列上阻塞的问题,FreeRTOS提供了队列集。首先要创建一个队列集资源,返回一个队列集句柄:

QueueSetHandle_t qsh;
qsh = xQueueCreateSet(const 
内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习启发因子优化,实现路径的动态调整多目标优化。项目解决了高维空间建模、动态障碍规、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑实时障等多目标协同优化;③为智能无人系统的自主决策环境适应能力提供算法支持; 阅读建议:此资源结合理论模型MATLAB实践,建议读者在理解ACOMLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值