《动态规划》 动态规划是一种算法策略,用于解决具有最优子结构和重复子问题特点的问题。它通过将问题分解为更小的子问题,并通过记忆化或表格化来避免重复计算,从而提高效率。如果一个问题的最优解包含其子问题的最优解,那么这个问题就具有最优子结构。在递归算法中,相同的子问题被多次计算,动态规划通过存储子问题的解来避免重复计算。定义dp数组的含义,dp[i]通常表示某个子问题的解。根据问题定义dp数组中元素之间的关系。确定dp数组的初始化值,即基本情况。
<python篇> 条件 if流程图:基本语法:2.if …else…允许程序在满足特定条件时执行一段代码,否则可以选择执行另一段代码。if …else…流程图:3)if…elif…else…if…elif…else…流程图:基本语法例子:4)match…cash…在Python中,match和case语句是用于模式匹配的语法结构,类似于其他编程语言中的switch或case语句。基本语法示例:在这个例子中,greet函数使用match语句来匹配person参数的值。如果person是"Alice"或"
<python篇>变量与函数 a = 10,第一步一定是将10储存起来,所以此时电脑会开辟新空间,将空间依次排序,然后将10存在其中一个空间中,然后给a一个可以找到10的标签。1):Python中的变量可以指向不同类型的数据,如整数、浮点数、字符串、列表、字典等。其中,整数和浮点数是不可变类型,意味着一旦创建就不能改变它们的值。而列表和字典是可变类型,可以在不改变变量名的情况下修改它们的内容2):变量的作用域决定了变量的可见性和生命周期。在函数内部定义的变量具有局部作用域,而在函数外部定义的变量具有全局作用域。3)
<python篇>数据类型和操作 计算时先从所看到的第一个表达式开始算(比如上图先算“x”为真还是假),对于与运算,若“x”为假,则整个“x”and“y”整个式子都为假,无需再去看“y”的属性,或运算同之。的值相等,因为它们都是0.1的累加。然而,由于浮点数的精度丢失,它们的比较结果却为False。这意味着在一些情况下,两个看似相等的浮点数可能不等于预期的值。由于浮点数的二进制表示存在截断和近似,所以在进行浮点数计算时会存在。使用decimal模块进行高精度计算。在上面的示例中,我们期望。:整数无法与字符串相加。
Datawhale X 李宏毅苹果书 AI夏令营 Task3笔记:机器学习实践方法论 模型偏差可能会影响模型训练,因为模型太简单,所以损失低的函数不在模型可以描述的范围内。这个时候要解决这个问题就要提高模型的灵活性,如果模型的灵活性不够大,可以增加更多特征,可以设一个更大的模型,可以用深度学习来增加模型的灵活性,。但是并不是训练的时候,损失大就代表一定是模型偏差,可能会遇到另外一个问题:优化做得不好。
Datawhale X 李宏毅苹果书 AI夏令营 Task2笔记:了解线性模型 先给定 θ 的值,即某一组 W, b, cT, b 的值,再计算一下跟真实的标签之间的误差 e。把所有的误差通通加起来,就得到损失。
Datawhale X 李宏毅苹果书 AI夏令营 Task1笔记:了解机器学习 首先简单介绍一下机器学习(Machine Learning,ML)的基本概念。机器学习,顾名思义,机器具备有学习的能力。具体来讲,:指的是找一个,能够描述一个场景数学规律的函数模型,具体方法大致是:让机器运行算法,通过输入的数据,确定合适的函数参数,逼近实际场景。:可以把函数当作一个功能的接口,靠机器学习找到这个功能的接口,然后调用这个接口去完成想要做的事。
Datawhale X 魔搭 AI夏令营:进阶上分-实战优化 我认为ComfyUI相当于搭积木,其为:目标–>工作流–>功能组–>模组–>模块GUI 是 “Graphical User Interface”(图形用户界面)的缩写。简单来说,GUI 就是你在电脑屏幕上看到的那种有图标、按钮和菜单的交互方式。ComfyUI 是GUI的一种,是基于节点工作的用户界面,主要用于操作图像的生成技术,ComfyUI 的特别之处在于它采用了一种模块化的设计,把图像生成的过程分解成了许多小的步骤,每个步骤都是一个节点。
Datawhale AI 夏令营【AIGC文生图】 文生图(Text-to-Image Generation)是一种通过文本生成图像的技术,其发展历程可以追溯到早期的计算机视觉和自然语言处理研究。文生图主要以SD系列基础模型为主,以及在其基础上微调的lora模型和人物基础模型等。使用MsDataset类从modelscope的数据集中加载名为AIModelScope/lowres_anime的数据集,这个数据集包含一系列的动漫图片,执行这段代码后,ds。