xc_bnu
码龄8年
关注
提问 私信
  • 博客:25,232
    25,232
    总访问量
  • 16
    原创
  • 1,123,894
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2017-03-29
博客简介:

xc_bnu的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得6次评论
  • 获得27次收藏
创作历程
  • 9篇
    2018年
  • 8篇
    2017年
成就勋章
TA的专栏
  • python安装步骤
    3篇
  • adobeflashplayer安装
    1篇
  • 网易云安装步骤
  • BeautifulSoup简介
    1篇
  • 机组知识点
    1篇
  • VMware安装教程
    1篇
  • Facial Expression Recognition
  • CNN
    2篇
  • 专业书籍
    5篇
  • 面试
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ffmpeg在pycharm中的使用

问题:解决:
原创
发布博客 2018.07.18 ·
7212 阅读 ·
0 点赞 ·
5 评论 ·
4 收藏

Max Pooling核运算

当步长大于1时,有时会出现边界问题,到底是扩充还是舍去:padding为SAME模式时,先对原图像进行填充,再做卷积,填充值须根据卷积核大小及滑动步长决定,当滑动步长大于1时:填充数=K-I%S(K:卷积核边长,I:输入图像边长,S:滑动步长),滑动步长为1时,直接卷积核边长减1,当差偶数个元素是首尾各补一半,差奇数个时前边补奇数个,后边补偶数个padding为VALID模式时,很简单粗暴直接从原...
原创
发布博客 2018.07.15 ·
3726 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

激活函数

1. Sigmoid非线性f(x)=11+e−x能够把输入的连续实值“压缩”到0和1之间缺点:容易出现饱和性2. tanh非线性tanh(x)=2sigmoid(2x)−1能够把输入的连续实值“压缩”到-1和1之间缺点:容易出现饱和性3. ReLU非线性f(x)=max(0,x)能够把输入的连续实值输出到0和正无穷之间缺点:当x小于0时,会出现饱和性4. Leaky-ReLU为了缓解饱和性f(x)...
原创
发布博客 2018.07.10 ·
192 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第2章 感知机

2.1 感知机模型:f(x)=sign(w*x+b)           w*x+b=0  超平面2.2 学习策略目的:找出无穷多个超平面中的一个能线性可分的超平面,即模型f(x)=sign(w*x+b)经验风险:误分类的数据                  min L(w,b)=−∑xiϵMyi(w∗x0+b)2.3  学习算法目的:提供算法求出使损失函数极小时的w、b,及确定感知机模型算法:...
原创
发布博客 2018.07.10 ·
176 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第5章 决策树

5.1  决策树模型与学习5.2  特征选择目的:选取的特征对训练数据有分类作用特征选择的准则:信息增益或信息增益比信息增益:输入对训练数据分类不确定性减少的程度,信息增益越大越好                g(D,A)=H(D)-H(D|A)信息增益比:5.3  决策树的生成1)ID3算法     求所有特征关于训练数据的信息增益,选最大值作为当前结点     叶子结点:当前结点将训练数据划...
原创
发布博客 2018.07.10 ·
332 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第4章 朴素贝叶斯法

4.1  朴素贝叶斯法的学习与分类先验概率:p(Y)后验概率:p(Y|X)4.2  朴素贝叶斯法的参数估计后验概率中有p(Y)、p(X|Y)要学习:1)极大似然估计用“指示函数平均化”2)学习和分类算法用1)中的计算方法来学习用公式4.7来分类3)贝叶斯估计加一个正数...
原创
发布博客 2018.07.09 ·
128 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第3章 k近邻法

3.1 k近邻算法简单而言:与x最邻近第k个点,在这k个点中找出最多个数点,则x属于最多点属于的类3.2  k近邻模型1)k值的选择     一般选一个比较小的数值,通常采用交叉验证法选取最优k值2)分类决策规则     多数表决规则,等价于经验风险最小化3.3 k近邻法的实现:kd树1)构造kd树      见例3.2:选择维度分隔2) 搜索kd树      见例3.3:找到一个叶子节点,画圆,...
原创
发布博客 2018.07.08 ·
150 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第1章 统计学习方法概论

模型(无穷多个)------->策略(选择最优模型)------->算法(生成最优模型)1)策略(选择最优模型)     损失函数(经验风险):     正则化(结构风险):     交叉验证(结构风险):2)算法(生成最优模型)     生成方法:条件概率分布     判别方法:...
原创
发布博客 2018.07.07 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文分析--《基于深度学习的人脸表情识别算法研究_宋新慧》

1.摘要:文章中提出的算法:1)针对静态的图像:细节感知迁移网络      数据集:CK+;Kaggle2)针对视频序列:利用多任务学习的递归神经网络      数据集:I-PFE2.本文工作:1)基于细节感知迁移网络的人脸表情识别:传统特征提取方法存在的问题:光照、角度等影响解决问题的方法:对抗网络(扩充数据集)+细节感知迁移网络(卷积神经网络)2)基于视频序列的多任务递归神经网络结构:编码网络...
原创
发布博客 2018.06.21 ·
5141 阅读 ·
0 点赞 ·
1 评论 ·
26 收藏

VMware安装教程

VMware安装教程
原创
发布博客 2017.09.12 ·
679 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机组相关知识点

计算机机组知识点
原创
发布博客 2017.04.10 ·
452 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

BeautifulSoup简介

BeautifulSoup简介
原创
发布博客 2017.04.06 ·
324 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ubuntu+网易云安装

ubuntu+网易云安装步骤
原创
发布博客 2017.04.06 ·
1485 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ubuntu如何安装adobe flash player

flash player+ubuntu
原创
发布博客 2017.03.30 ·
535 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python安装步骤

ubuntu+python
原创
发布博客 2017.03.30 ·
436 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

vs2013+python+PTVS

vs2013+python安装步骤
原创
发布博客 2017.03.29 ·
3374 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pycharm+python

pycharm+python安装步骤
原创
发布博客 2017.03.29 ·
724 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多