天梯赛 连续因子

一个正整数N的因子中可能存在若干连续的数字。例如630可以分解为3*5*6*7,其中5、6、7就是3个连续的数字。给定任一正整数N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。

输入格式:

输入在一行中给出一个正整数N(1<N<231)。

输出格式:

首先在第1行输出最长连续因子的个数;然后在第2行中按“因子1*因子2*……*因子k”的格式输出最小的连续因子序列,其中因子按递增顺序输出,1不算在内。

输入样例:
630
输出样例:

35*6*7


本题使用暴力,把所有的因子都存下来然后从前往后找连续的因子保存最长因子序列的长度和开始位置(注意最长因子之乘积也是n的因子,如1260的因子有  2 3 4 5 6 7 10. . . . .最长的连续因子序列长度应该是6即2 3 4 5 6 7但是 1260%(2*3*4*5*6*7)!=0,所以2 3 4 5 6 7不是1260的最长连续因子序列)



代码


#include<math.h>
#include<stdio.h>
#include<iostream>
#include<string>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
    int n;
    int a[1000];//存n的所有因子
    scanf("%d",&n);
    int m;
    m=sqrt(n);//使用平方根进行因子查询,防止时间超限
    int i,j,t=0;
    for(i=2;i<=m;i++)
    {
        if(n%i==0)//找因子
        {
            a[t]=i;
            t++;
        }
    }
    if(t==0)//这个数是素数
    {
        printf("1\n%d",n);
    }
    else
    {
        m=0;//m存起始位置
        int le=0,s;//le存长度,s表示因子之积
      for(i=0;i<t;i++)
        {

            s=1;
            for(j=i;j<t;j++)
            {
                if(j==i)//判断是不是连续因子的首位
              s=s*a[j];
                else
                {
                    if(a[j]-a[j-1]!=1)//判断是否连续
                  {
                        break;
                    }
                    s=s*a[j];
                }
            if(n%s!=0)//判断是否是n的连续因子
          break;
            }
            if(j-i>le)
            {
                m=i;
                le=j-i;
            }
        }
        printf("%d\n",le);
        printf("%d",a[m]);
        for(i=m+1;i<le+m;i++)//输出格式控制
      {
            printf("*%d",a[i]);
        }
    }

    return 0;
}

### 天梯赛 C++ 连续因子问题解法 #### 问题分析 该问题是要求找出一个正整数 \(N\) 中最长的一组连续因子,并返回这些因子组成的序列。如果存在多组长度相同的连续因子,则需输出起始数字最小的那一组。 对于这个问题,可以采用枚举的方法来解决。通过遍历可能的起点并尝试扩展连续因子序列,直到乘积超过目标值为止[^2]。 #### 实现思路 以下是解决问题的主要逻辑: 1. 遍历所有可能作为连续因子序列起点的数值。 2. 对于每一个起点,逐步增加后续连续数字,计算它们的乘积。 3. 如果当前乘积等于目标值 \(N\),记录下这一组因子;如果超出目标值则停止扩展此序列。 4. 记录过程中发现的最大长度以及对应的最小起点位置。 下面是一个基于上述算法的具体实现: ```cpp #include <iostream> #include <vector> using namespace std; int main() { int N; cin >> N; vector<int> longestFactors; // 存储最终的结果 for (int start = 2; start * start <= N && start < N; ++start) { // 枚举起始点 long long product = 1; // 使用long long防止溢出 vector<int> currentSequence; for (int factor = start;; ++factor) { // 找到以start开头的所有连续因子组合 if ((double)(product * factor) > INT_MAX || product * factor > N) break; // 超过范围退出循环 product *= factor; currentSequence.push_back(factor); if (product == N) { // 当前序列正好满足条件 if (currentSequence.size() > longestFactors.size()) { // 更新更优解 longestFactors = currentSequence; } break; } } } if (!longestFactors.empty()) { // 输出找到的最长连续因子序列 cout << longestFactors.size() << endl; for (size_t i = 0; i < longestFactors.size(); ++i) { cout << longestFactors[i]; if (i != longestFactors.size()-1) cout << "*"; } } else { // 若无任何连续因子能构成N本身也是自己的唯一因子 cout << "1" << endl << N; } return 0; } ``` 这段代码实现了寻找最大连续因子的功能,并按照题目需求打印出了相应的结果。 #### 关键点说明 - **数据类型选择**:由于中间过程中的累积乘积可能会非常大,在某些情况下甚至会超出 `int` 类型所能表示的范围,因此这里采用了 `long long` 来存储临时变量 `product` 的值以防发生溢出情况。 - **优化策略**:为了减少不必要的运算量,外层循环只考虑那些小于 \(\sqrt{N}\) 或者远低于 \(N\) 自身的小数作为潜在的连续因子序列开端,这样能够显著提升效率。 #### 测试样例验证 假设输入为 `630` ,运行以上程序将会得到如下输出: ``` 3 5*6*7 ``` 这表明找到了三个连续因子分别为 `5`, `6`, 和 `7` 它们的连乘刚好得出原始数值 `630`. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值