xceman1997
码龄16年
关注
提问 私信
  • 博客:899,699
    社区:62
    899,761
    总访问量
  • 167
    原创
  • 1,949,655
    排名
  • 416
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新加坡
  • 加入CSDN时间: 2009-07-22
博客简介:

xceman1997的专栏

博客描述:
基础知识、c/c++语言、自然语言处理技术
查看详细资料
个人成就
  • 获得90次点赞
  • 内容获得75次评论
  • 获得151次收藏
创作历程
  • 6篇
    2016年
  • 29篇
    2015年
  • 71篇
    2014年
  • 138篇
    2013年
  • 81篇
    2012年
成就勋章
TA的专栏
  • 基础知识
    46篇
  • c/c++
    25篇
  • NLP
    106篇
  • hadoop
    15篇
  • Java
    18篇
  • Python
    16篇
  • 机器学习
    143篇
  • Linux
    6篇
  • 研发管理
    10篇
  • 杂谈
    3篇
  • DL
    49篇
兴趣领域 设置
  • 人工智能
    nlp
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【转载】Learning To Rank之LambdaMART的前世今生

原文地址:http://blog.csdn.net/huagong_adu/article/details/407103051.       前言         我们知道排序在很多应用场景中属于一个非常核心的模块,最直接的应用就是搜索引擎。当用户提交一个query,搜索引擎会召回很多文档,然后根据文档与query以及用户的相关程度对文档进行排序,这些文档如何排序直接决
转载
发布博客 2016.03.10 ·
7436 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【转载】广告计算——平滑CTR

原文地址:http://m.blog.csdn.net/article/details?id=50492787一、广告计算的基本概念1、广告的形式在互联网发展的过程中,广告成为了互联网企业盈利的一个很重要的部分,根据不同的广告形式,互联网广告可以分为:展示广告(display ads)赞助商搜索广告(sponsored search)上下文广告(co
转载
发布博客 2016.03.05 ·
8626 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【转载】互联网广告综述之点击率特征工程

原文地址:http://blog.csdn.net/mytestmy/article/details/19088827一.互联网广告特征工程博文《互联网广告综述之点击率系统》论述了互联网广告的点击率系统,可以看到,其中的logistic regression模型是比较简单而且实用的,其训练方法虽然有多种,但目标是一致的,训练结果对效果的影响是比较大,但是训练方法本身,对效果
转载
发布博客 2016.03.05 ·
8491 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【转载】深入FFM原理与实践

原文地址:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html深入FFM原理与实践del2z, 大龙 ·2016-03-03 09:00FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡
转载
发布博客 2016.03.05 ·
10211 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

【转载】点击率预估的几个经典模型简介

原文地址:http://mp.weixin.qq.com/s?__biz=MzAwNDU4MjIyOA==&mid=402059039&idx=1&sn=d76033b80a0b9d0975e0ba98f37f9f2c&scene=1&srcid=0222Ic808bERBd4Qp3PuMBpV&from=groupmessage&isappinstalled=0#wechat_redirect
转载
发布博客 2016.02.22 ·
8542 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

【转载】论文读书笔记-personalized news recommendation based on click behavior

比较经典的论文,有时候想起来,想再看看,总是不知道放哪儿了。索性放到blog上,随时查阅。论文分享链接:http://pan.baidu.com/s/1o7eroxW还有一篇别人的阅读笔记,挺好的。出处:http://www.aiuxian.com/article/p-334703.html====================================
转载
发布博客 2016.02.13 ·
7801 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【论文阅读:LDA】The Author-Topic Model for Authors and Documents_2004(ATM经典论文)

综述:ATM(author topic mode)的经典文章。具体:在传统LDA模型的基础上,加入author的概念。传统LDA模型,是描述文档和词(文档组成元素)之前的关系,这种关系用主题(topic)来衔接和描述。这篇文章加入author的概念。即一篇文章可能有多个author,一个author可能有多个文章,词是文章的组成元素,那么,ATM模型,通过topic描述了aut
原创
发布博客 2015.12.16 ·
7771 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【转载】汇总:LDA理论、变形、优化、应用、工具库

原文地址:http://site.douban.com/204776/widget/notes/12599608/note/287085506/2013-07-08 19:22:18http://www.douban.com/note/287085419/啥了不说了,这几天简直成魔了。自己的LDA框架也整理好了,接下来重新梳理一遍这边就算任督二脉打通啦!
转载
发布博客 2015.12.14 ·
7937 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【论文阅读:文章中心词抽取】TextRank: Bringing Order into Texts - emnlp 2004

综述:textrank的经典开山文章。用处在于:1. 抽取文章关键词;2. 抽取文摘具体内容:1 抽取文章关键词的几种思路:(1)简单统计方法:tf/idf(2)有监督的学习方法:将关键词抽取问题转成分类问题,用分类模型,如:朴素贝叶斯,来解决(3)无监督的学习方法(3-1)graph-based方法,即本文方法(3-2)LDA主题模型2
原创
发布博客 2015.12.01 ·
7911 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

ROC和AUC介绍以及如何计算AUC

原文地址:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ROC和AUC介绍以及如何计算AUCJune 22, 2013ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇
转载
发布博客 2015.11.03 ·
6604 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【Deep Learning】Using Structured Events to Predict Stock Price Movement:An Empirical Investigation

时间:2014发表于:EMNLP原文件:http://pan.baidu.com/s/1i3phG49主要内容:利用新闻事件来预测:1. 美股大盘走势;2. 挑选的15个个股的走势。详细内容:主要工作步骤:1. 抽取财经新闻2. 对新闻title进行parser,并进行事件抽取。其中事件抽取是open information extraction
原创
发布博客 2015.08.07 ·
8158 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【LDA】动手实现LDA

这段时间对LDA比较感兴趣,尝试在工作中使用它。平时做想法的快速验证,都用的是“GibbsLDA++-0.2”,一个c实现版本的LDA。这两天用c++ stl自己写了一个单机版的LDA,初衷如下:1. “GibbsLDA++-0.2”虽说号称是最popular的LDA工具包,不过依然有明显的bug,参考“【LDA】修正 GibbsLDA++-0.2 中的两个内存问题”。2. “GibbsL
原创
发布博客 2015.07.14 ·
7809 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【Deep Learning】genCNN: A Convolutional Architecture for Word Sequence Prediction

作者:Mingxuan Wang,李航,刘群 单位:华为、中科院 时间:2015 发表于:acl 2015 文章下载:http://pan.baidu.com/s/1bnBBVuJ主要内容: 用deep learning设计了一种语言模型,能够根据之前“所有”的历史来预测当前词的条件概率。用语言模型迷惑度衡量、用机器翻译衡量,该模型都比baseline(5-gram、RNN、等)好具体内容
原创
发布博客 2015.06.29 ·
7556 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

在win7 + vs express for desktop中安装stlport和boost库

一、安装stlport stlport是将sgi的stl库平移到各个平台上。sgi的这个库的特点就是效率非常高。boost在这个库上面运行要比vs自带的stl库效率高。所以我们首选安装stlport。下载stlport:http://sourceforge.net/projects/stlport/ 最新版本是5.2.1 放到C盘根目录下面,解压。进入”vs2012 x86 native to
原创
发布博客 2015.06.28 ·
6561 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【LDA】并行化LDA的一些开源资料

资料:http://dataunion.org/10760.htmlgoogle pLDA:https://code.google.com/p/plda/yahoo Y!LDA:https://github.com/sudar/Yahoo_LDA
原创
发布博客 2015.06.21 ·
8126 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【LDA】用MPI优化GibbsLDA++-0.2

MPI 是“Message Passing Interface”的缩写,通常用来做单机多线程的并发编程。1. GibbsLDA++中训练框架大致如下:循环:训练过程迭代N次{ 循环:遍历每一个训练样本(指doc) { 循环:遍历训练样本中的每一个word { 循环:gibbs采样过
原创
发布博客 2015.06.21 ·
8272 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

通俗理解LDA主题模型 zz

原文地址:http://www.note4j.com/?p=1130 前言印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是因为这篇文档的前序铺垫太长(现在才意识到这些“铺垫”都是深刻理解LDA 的基础,但如果没有人帮助初学者提纲挈领、把握主次、理清思路,
原创
发布博客 2015.06.18 ·
7305 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【LDA】修正 GibbsLDA++-0.2 中的两个内存问题

周末这两天在家用LDA做个小实验。在LDA的众多实现的工具包中,GibbsLDA 是应用最广泛的,包括c++版本、java版本等。GibbsLDA++ 是它的C++版本的实现,目前最新版本是0.2版。在实际使用过程中,发现这个实现版本有内存使用问题。我花了一些时间定位到了问题,贴出来供大家参考。问题1:数组内存访问越界在model.cpp中,用到了两个矩阵nw和nd,分别存储wor
原创
发布博客 2015.06.07 ·
7724 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【转载】语义分析的一些方法

貌似是腾讯广点通部门的人写的,挺不错的。原文地址:http://dataunion.org/10748.htmlhttp://dataunion.org/10760.htmlhttp://dataunion.org/10781.html语义分析,本文指运用各种机器学习方法,挖掘与学习文本、图片等的深层次概念。wikipedia上的解释:In machine
转载
发布博客 2015.06.01 ·
8799 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【转载】Softmax Regression

原文地址:http://www.cnblogs.com/tornadomeet/archive/2013/03/22/2975978.html在前面的logistic regression博文Deep learning:四(logistic regression练习) 中,我们知道logistic regression很适合做一些非线性方面的分类问题,不过它只适合处理二分类
转载
发布博客 2015.05.31 ·
842 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多