暴力递归与动态规划

1、汉诺塔问题。打印n层汉诺塔从最左边移动到最右边的全部过程。

    public static void main(String[] args) {
        method(3, "左", "右", "中");
    }

    public static void method(int n, String from, String to, String help) {
        if (n == 1) {
            System.out.println("move " + n + " from " + from + " to " + to);
            return;
        }

        method(n - 1, from, help, to);
        System.out.println("move " + n + " from " + from + " to " + to);
        method(n - 1, help, to, from);
    }

 

move 1 from 左 to 右
move 2 from 左 to 中
move 1 from 右 to 中
move 3 from 左 to 右
move 1 from 中 to 左
move 2 from 中 to 右
move 1 from 左 to 右

2、打印一个字符串的全部子序列,包括空字符串。

    public static void method(String string) {
        String res = "";
        method(string, res, 0);
    }

    public static void method(String string, String res, int index) {
        if (index == string.length()) {
            System.out.println(res);
            return;
        }
//拼接当前index字符
        method(string, res + string.charAt(index), index + 1);
//不拼接当前index字符
        method(string, res, index + 1);
    }

3、打印一个字符串的全排列。

    public static void method(String string) {
        char[] chars = string.toCharArray();
        method(chars, 0);
    }

    public static void method(char[] chars, int index) {


        if (index == chars.length - 1) {
            System.out.println(chars);
            return;
        }
//依次将index位置的数值设为后面的每一个数
        for (int i = index; i < chars.length; i++) {
            swap(chars, index, i);
            method(chars, index + 1);
            swap(chars, index, i);
        }
    }

    public static void swap(char[] chars, int i, int j) {
        char temp = chars[i];
        chars[i] = chars[j];
        chars[j] = temp;
    }

4、打印一个字符串的全部排列,要求不要出现重复的排列。

1)、加一个set去重。。

    public static void method(String string) {
        char[] chars = string.toCharArray();
        HashSet<String> set = new HashSet<>();
        method(chars, 0, set);

    }

    public static void method(char[] chars, int index, HashSet<String> set) {
        if (index == chars.length - 1) {
            if (!set.contains(String.valueOf(chars))) {
                set.add(String.valueOf(chars));
                System.out.println(chars);
            }
            return;
        }

        for (int i = index; i < chars.length; i++) {
            if (i != index && chars[i] == chars[index]) {
                continue;
            }
            swap(chars, index, i);
            method(chars, index + 1, set);
            swap(chars, index, i);
        }
    }

    public static void swap(char[] chars, int i, int j) {
        char temp = chars[i];
        chars[i] = chars[j];
        chars[j] = temp;
    }

2)、还没想好。。

5、给你一个二维数组,二维数组中的每个数都是正数,要求从左上角走到右下角,每一步只能向右或者向下。沿途经过的数字要累加起来。返回最小的路径和。

思路:1)、从左上到右下,可以右移或下移,暴力递归枚举所有的路径,取最小的。

    public static void method(int[][] arr) {
        int method = method(arr, 0, 0);
        System.out.println(method);
    }

    public static int method(int[][] arr, int i, int j) {
        if (i == arr.length - 1 && j == arr[0].length - 1) {
            return arr[i][j];
        }

        if (i == arr.length - 1) {
            return arr[i][j] + method(arr, i, j + 1);
        }
        if (j == arr[0].length - 1) {
            return arr[i][j] + method(arr, i + 1, j);
        }
        return Math.min(arr[i][j] + method(arr, i, j + 1), arr[i][j] + method(arr, i + 1, j));
    }

2)、动态规划

从右下角开始,每个数到右下角的最短路径取决于当前数右边的数下边的数

    public static int method2(int[][] arr, int m, int n) {
        int[][] dp = new int[arr.length][arr[0].length];

        int tr = arr.length - 1;
        int td = arr[0].length - 1;
        for (int i = tr; i >= 0; i--) {
            for (int j = td; j >= 0; j--) {

                if (i == tr && j == td) {
                    dp[i][j] = arr[i][j];
                    continue;
                }

                if (i == tr) {
                    dp[i][j] = dp[i][j + 1] + arr[i][j];
                    continue;
                }

                if (j == td) {
                    dp[i][j] = dp[i + 1][j] + arr[i][j];
                    continue;
                }
                dp[i][j] = Math.min(dp[i][j + 1], dp[i + 1][j]) + arr[i][j];
            }
        }
        return dp[m][n];
    }

6、给你一个数组arr,和一个整数aim。如果可以任意选择arr中的数字,能不能累加得到aim,返回true或者false

1、递归枚举

    public static boolean method(int[] arr, int aim) {
        return method(arr, aim, 0, 0);
    }

    public static boolean method(int[] arr, int aim, int index, int res) {

        if (index == arr.length) {
            if (res == aim) {
                return true;
            }
            return false;
        }
        
        return method(arr, aim, index + 1, res + arr[index]) || method(arr, aim, index + 1, res);
    }
}

6、折纸问题: 请把一段纸条竖着放在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。此时 折痕是凹下去的,即折痕突起的方向指向纸条的背面。

如果从纸条的下边向上方连续对折2 次,压出折痕后展开,此时有三条折痕,从上到下依次是下折痕、下折痕和上折痕。

思路:折痕将字条分成两部分,下次对折时,折痕的上部会出现一个下折痕,下部会出现一个上折痕。

    public static void main(String[] args) {
        method(3, true);
    }

    public static void method(int num, boolean down) {
        if (num == 0) {
            return;
        }
        method(num - 1, true);
        System.out.println(down ? "down" : "up");
        method(num - 1, false);
    }
down 
down 
up 
down 
down 
up 
up 

7、给你一个栈,请你逆序这个栈,不能申请额外的数据结构,只能使用递归函数。如何实现?

思路:要逆序,就是每次都取出当前栈的最底部的数,递归返回时将其压入栈中

 //每次都取出当前栈的最底部的数,递归返回时将其压入栈中。
     public static void method(Stack<Integer> stack) {
        if (stack.isEmpty()) {
            return;
        }
        int num = getAndRemoveLastNumber(stack);
        method(stack);
        stack.push(num);
    }
//要取出最底部的数也是通过递归实现。
    public static int getAndRemoveLastNumber(Stack<Integer> stack) {
        int last;
        if (stack.size() == 1) {
            last = stack.pop();
            return last;
        }
        int num = stack.pop();
        last = getAndRemoveLastNumber(stack);
        stack.push(num);
        return last;
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值