牛顿法及拟牛顿法笔记

牛顿法

二阶优化算法又称为牛顿法,牛顿法是微积分学中, 通过迭代以求解可微函数f的零点的一种算法,而在最优化中,牛顿法通常被运用于求解一个二次可微函数f的一阶导数f’的零点x, 同时也是f的驻点。 因此从另一个角度而言,应用于最优化中的牛顿法是求解函数 f(x)的最小值或最大值的一种算法。

考虑无约束最优化问题

minxRnf(x)

其中x是目标函数的最小点

假设f(x)具有二阶连续偏导数,设第k次迭代值是x(k),则可以将f(x)在x(k)处进行泰勒二次展开:

f(x)=f(x(k))+gkT(xx(k))+1/2(xx(k))H(x(k))(xx(k))

其中gkT=f(x(k)),H(x(k))是f(x)的Hessain矩阵

H(x)=[2f(x)xixj]

函数f(x)有极值的必要条件是极值点一阶导数是0

那么对f(x)的泰勒展开求导并令导数为0得到如下,并令x(k+1)为下一次迭代的值

gk+Hk(x(k+1)x(k))=0

那么就可以得到

x(k+1)=x(k)+pk

其中, pk 包含了这次的迭代方向,他由下面这个式子决定
Hkpk=gk

如果Hk可逆,则有
x(k+1)=x(k)Hk1gk

拟牛顿法

上述牛顿法需要计算Hessain的逆,通常这一计算需要耗费很多时间,而我们需要的只是Hessain里面所包含的曲率信息.所以拟牛顿想法就是构造出一个矩阵包含我们需要的信息
相关的拟牛顿方法有DFP, BFGS, Broyden类算法

拟牛顿条件

这里我们看牛顿法中需要满足的条件

gk+Hk(x(k+1)x(k))=gk+1=>Hk(x(k+1)x(k))=gk+1gk

现在记yk=gk+1gk,δk=x(k+1)x(k),得到如下

yk=Hkδk
或者
Hk1yk=δk

这两个式子就称为拟牛顿条件
在构造的时候Hessain的逆需要时正定的,因为这样可以保证求出的p是下降方向
拟牛顿Hessain逆需要是正定的

拟牛顿法的构造思路

构造思路

DFP

DFP1
DFP2

BFGS

BFGS1
BFGS2

详情看《统计学习方法》中的附录B

参考文献
1. 《统计学习方法》 -李航

阅读更多
版权声明:欢迎转载,转载时请注明出处 https://blog.csdn.net/xfzero/article/details/79945979
个人分类: 机器学习优化算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭