牛顿法及拟牛顿法笔记

原创 2018年04月15日 00:24:48

牛顿法

二阶优化算法又称为牛顿法,牛顿法是微积分学中, 通过迭代以求解可微函数f的零点的一种算法,而在最优化中,牛顿法通常被运用于求解一个二次可微函数f的一阶导数f’的零点x, 同时也是f的驻点。 因此从另一个角度而言,应用于最优化中的牛顿法是求解函数 f(x)的最小值或最大值的一种算法。

考虑无约束最优化问题

minxRnf(x)

其中x是目标函数的最小点

假设f(x)具有二阶连续偏导数,设第k次迭代值是x(k),则可以将f(x)在x(k)处进行泰勒二次展开:

f(x)=f(x(k))+gkT(xx(k))+1/2(xx(k))H(x(k))(xx(k))

其中gkT=f(x(k)),H(x(k))是f(x)的Hessain矩阵

H(x)=[2f(x)xixj]

函数f(x)有极值的必要条件是极值点一阶导数是0

那么对f(x)的泰勒展开求导并令导数为0得到如下,并令x(k+1)为下一次迭代的值

gk+Hk(x(k+1)x(k))=0

那么就可以得到

x(k+1)=x(k)+pk

其中, pk 包含了这次的迭代方向,他由下面这个式子决定
Hkpk=gk

如果Hk可逆,则有
x(k+1)=x(k)Hk1gk

拟牛顿法

上述牛顿法需要计算Hessain的逆,通常这一计算需要耗费很多时间,而我们需要的只是Hessain里面所包含的曲率信息.所以拟牛顿想法就是构造出一个矩阵包含我们需要的信息
相关的拟牛顿方法有DFP, BFGS, Broyden类算法

拟牛顿条件

这里我们看牛顿法中需要满足的条件

gk+Hk(x(k+1)x(k))=gk+1=>Hk(x(k+1)x(k))=gk+1gk

现在记yk=gk+1gk,δk=x(k+1)x(k),得到如下

yk=Hkδk
或者
Hk1yk=δk

这两个式子就称为拟牛顿条件
在构造的时候Hessain的逆需要时正定的,因为这样可以保证求出的p是下降方向
拟牛顿Hessain逆需要是正定的

拟牛顿法的构造思路

构造思路

DFP

DFP1
DFP2

BFGS

BFGS1
BFGS2

详情看《统计学习方法》中的附录B

参考文献
1. 《统计学习方法》 -李航

版权声明:欢迎转载,转载时请注明出处 https://blog.csdn.net/xfzero/article/details/79945979

牛顿法与拟牛顿法学习笔记(一)牛顿法

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
  • peghoty
  • peghoty
  • 2014-03-24 00:51:18
  • 56108

牛顿法与拟牛顿法

牛顿法求函数的根牛顿法的最初提出是用来求解方程的根的。我们假设点x∗x^*为函数f(x)f(x)的根,那么有f(x∗)=0f(x^*) = 0。现在我们把函数f(x)f(x)在点xkx_k处一阶泰勒展...
  • batuwuhanpei
  • batuwuhanpei
  • 2016-07-21 11:49:43
  • 7611

牛顿法与拟牛顿法学习笔记(二)拟牛顿条件

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
  • peghoty
  • peghoty
  • 2014-03-24 00:51:44
  • 26021

【数学】梯度下降,牛顿法与拟牛顿法

这三个优化算法,实在是太过经典,以至于很多文章都在说这个算法。这里主要就写一写我自己的感悟吧。剩下的再集成一下别的感觉比较好的微博 梯度下降 牛顿法 拟牛顿法 参考文献...
  • haolexiao
  • haolexiao
  • 2017-03-16 00:20:18
  • 815

统计学习方法-牛顿法和拟牛顿法

牛顿法和拟牛顿法   牛顿法和拟牛顿法是求解无约束最优化问题的常用方法,有收敛速度快的优点。牛顿法是迭代算法,每一步需要求解目标函数的海赛矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似海赛矩阵的...
  • Jack_lyp2017
  • Jack_lyp2017
  • 2017-12-01 16:19:05
  • 240

算法细节系列(3):梯度下降法,牛顿法,拟牛顿法

算法细节系列(3):梯度下降法,牛顿法,拟牛顿法迭代算法原型话不多说,直接进入主题。在我看来,不管是梯度下降法还是牛顿法,它们都可以归结为一个式子,即 x=ϕ(x) x = \phi(x) 也就是...
  • u014688145
  • u014688145
  • 2016-12-16 09:17:14
  • 3530

牛顿法,拟牛顿法, 共轭梯度法

转载地址:http://blog.csdn.net/luoleicn/article/details/6527049 牛顿法: 1、求解方程。 并不是所有的方程都有求根公式,或者求根公式很复杂,导致求...
  • u011722133
  • u011722133
  • 2016-12-09 13:21:28
  • 544

梯度下降、牛顿法、拟牛顿法

介绍 在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性...
  • a819825294
  • a819825294
  • 2016-08-10 18:50:23
  • 6835

牛顿法与拟牛顿法学习笔记(四)BFGS 算法

机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BF...
  • peghoty
  • peghoty
  • 2014-03-24 00:53:04
  • 43903

优化学习率 - 2 - 牛顿法、拟牛顿法

本章总结优化学习率的知识,而前置知识就是“线性回归、梯度下降算法”,因此如果这一章你看的云里雾里甚至连学习率是什么都不知道的话就需要先吧前置知识搞定了。 其他说明       因为本总结的前置知识是“...
  • xueyingxue001
  • xueyingxue001
  • 2016-07-13 15:02:01
  • 911
收藏助手
不良信息举报
您举报文章:牛顿法及拟牛顿法笔记
举报原因:
原因补充:

(最多只允许输入30个字)