BZOJ2958&3269序列染色 DP

Description
给出一个长度为N由B、W、X三种字符组成的字符串S,你需要把每一个X染成B或W中的一个。
对于给出的K,问有多少种染色方式使得存在整数a,b,c,d使得:
1 <= a <= b < c <= d <= N
Sa,Sa+1,…,Sb均为B
Sc,Sc+1,…,Sd均为W
其中b=a+K-1,d=c+K-1
由于方法可能很多,因此只需要输出最后的答案对10^9+7取模的结果。


Sample Input
5 2
XXXXX


Sample Output
4


这题搞了我好久,推DP的时候推错了一点,搞了半天。。。
这题容易想到DP,我们考虑状态dp[i][j][k]为当前枚举第i个位置,染j这个颜色,k表示当前的状态数。
k = 0,序列中不含连续k个B
k = 1,序列中含连续k个B,不含连续k个W
k = 2,序列中含连续k个B,含连续k个W
先考虑k=0时的转移,
当j = 1时,
f[i][1][0] = f[i - 1][0][0] + f[i - 1][1][0]
j = 0时,注意可能会出现加入了当前的0可能会出现连续k个0的情况,于是要减掉这种情况的影响,换言之就是要减去i的前k-1个数都是0的情况,一开始我的想法很单纯就是直接减去f[i-k][0][0],但注意这样这样是不可行的因为假设我j强制i-k这一位是B,那么前k-1为0的情况是不存在的,于是就减掉了不该减的情况。
先给大家一组数据yy一下:
N = 7, K = 3
BXXXXXX
那么我们换一种想法,如何使前k-1个0的存在是合法的呢,也就是说使前k-1个数是0,但却不构成k个B。可以想到只需强制i-k位强制为1即可,那么可得:
f[i][0][0] = f[i - 1][0][0] + f[i - 1][1][0] - f[i - k][1][0]
但注意这条转移也有一个限制:就是前k-1位全部都是0才可以转移,这个玩意我们开个前缀和判断一下即可。
同理可以推出部分k = 1的情况,
这时要考虑j = 0时,从k = 1继承k = 0的情况,跟前面证明的过程同理易得,没什么好说
f[i][0][1] = f[i - 1][0][1] + f[i - 1][1][1] + f[i - k][1][0]
f[i][1][1] = f[i - 1][0][1] + f[i - 1][1][1] - f[i - k][0][1]
仍然要开个前缀和维护
k = 2就不说了,易推。。。
剩下的具体看代码吧,其实码量很小,最主要你要证明一下。


#include <cstdio>
#include <cstring>

using namespace std;
typedef long long LL;
const int mod = 1000000007;

LL f[1100000][2][3]; int s1[1100000], s2[1100000];
char ss[1100000];

int main() {
    int n, k; scanf("%d%d", &n, &k);
    scanf("%s", ss + 1);
    for(int i = 1; i <= n; i++) {
        if(ss[i] == 'X') s1[i] = s1[i - 1] + 1, s2[i] = s2[i - 1] + 1;
        else if(ss[i] == 'B') s1[i] = s1[i - 1] + 1;
        else s2[i] = s2[i - 1] + 1;
    }
    f[0][1][0] = 1;
    for(int i = 1; i <= n; i++) {
        if(ss[i] == 'X' || ss[i] == 'B') {
            LL z1 = 0; if(i >= k) z1 = f[i - k][1][0];
            (f[i][0][0] = f[i - 1][0][0] + f[i - 1][1][0]) %= mod;
            (f[i][0][1] = f[i - 1][0][1] + f[i - 1][1][1]) %= mod;
            (f[i][0][2] = f[i - 1][0][2] + f[i - 1][1][2]) %= mod;
            if(s1[i] - s1[i - k] == k && i >= k)
                (f[i][0][1] += z1) %= mod, (f[i][0][0] -= z1) % mod;
        }
        if(ss[i] == 'X' || ss[i] == 'W') {
            LL z2 = 0; if(i >= k) z2 = f[i - k][0][1];
            (f[i][1][0] = f[i - 1][0][0] + f[i - 1][1][0]) %= mod;
            (f[i][1][1] = f[i - 1][0][1] + f[i - 1][1][1]) %= mod;
            (f[i][1][2] = f[i - 1][0][2] + f[i - 1][1][2]) %= mod;
            if(s2[i] - s2[i - k] == k && i >= k)
                (f[i][1][2] += z2) %= mod, (f[i][1][1] -= z2) % mod;
        }
    }
    printf("%lld\n", ((f[n][0][2] + f[n][1][2]) % mod + mod) % mod);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值