G1垃圾收集器

G1垃圾收集器是Oracle JDK 7 Update 4及后续版本中的一种高性能垃圾收集器,适用于多处理器和大内存环境。它能大概率满足用户设定的GC暂停时间,同时实现高吞吐量。G1通过并发全局标记阶段来确定对象生存状态,并优先清理垃圾较多的内存区域,从而减少暂停时间和内存碎片。

介绍

Oracle JDK 7 update 4以及之后的版本已经完全支持G1垃圾收集器了。G1收集器是一个服务器式的垃圾收集器,适合用于多处理器和大内存的机器。它能很大概率上满足你所设置的GC暂停时间,同时实现高吞吐量。类似于内存垃圾标记这样的全堆操作,可以和应用程序线程同时执行。这样避免了和堆及存活数据大小成正比的中断用户线程操作。


技术说明

G1收集器通过多种技术实现了高性能和目标暂停时间。


堆被划分为一组大小相等的区域,每个区域都是连续的虚拟内存。G1通过并发的全局标记阶段来确定整个堆上对象的存活性。在标记阶段结束后,G1知道哪些区域的空闲空间是最大的。它将首先在这些区域进行进行收集,这样就能腾出大量的可用内存空间。这就是为什么这种垃圾收集方法叫Garbage-First。顾名思义,G1关注在那些充满了可回收对象(也就是内存垃圾)的堆区域进行收集和整理。G1使用暂停预测模型来满足用户定义的暂停时间目标,并根据设定的目标暂停时间来选择相应的区域。


这些被G1选中的区域被认为是成熟的可回收内存垃圾。G1把一个或多个堆区域的对象复制到另一个堆区域上,同时进行内存整理和释放。这个释放过程是在多处理器上并行执行的,以减少暂停时间并提高吞吐量。所以,每次垃圾收集时G1会在满足用户定义的暂停时间的基础上连续运行来减少内存碎片。这种方法优于之前的垃圾回收方法。CMS(并发标记扫描)垃圾收集器并不会做内存整理。ParallelOld垃圾收集器只执行全堆压缩整理,这将导致大量的暂停时间。


要注意的是G1并不是一个实时的收集器。它在很大概率上会满足设置的暂停时间但是并不绝对准确。基于之前的收集情况,G1能估计出在用户给定的时间内能回收多少个区域。因此G1对区域的收集成本有一个相对精确的模型,并使用这个模型来推算在给定的暂停时间内能回收哪几个区域。


要获取更多的G1使用配置信息请查阅命令行选项


推荐使用G1的案例

G1主要为那些运行需要大型堆并且对GC延迟时间有要求的应用提供了解决方案。这意味着可以在堆大小在6GB或更大,并且要保持稳定可预测的暂停时间在0.5秒以下的情况下使用G1。


那些现在使用CMS或者ParallelOld垃圾收集器的运行着的应用如果具备以下一个或多少特征,将在切换到G1后受益:

Java堆 的50%以上被实时数据占用

对象的分配率或者晋升变化明显

不希望有长时间的GC或压缩整理时间停顿(大于0.5到1秒)


未来

G1在长远的计划上会替代CMS。两者相比来说,G1有更好的解决方案上的差异。一个差异就是G1是一个压缩的收集器,G1的压缩完全有效地避免了细粒度空闲列表的分配,取而代之的是依赖于区域。这大大简化了大部分的收集器,并且有效消除了潜在的内存碎片问题。另一方面,相比CMS来说G1提供了更可预测的垃圾回收暂停时间,并允许用户定义期望的暂停时间。


译自:http://www.oracle.com/technetwork/java/javase/tech/vmoptions-jsp-140102.html





提供了一个详细的MATLAB仿真程序,用于实现自回归(AR)模型的功率谱估计。该程序基于经典的数字信号处理教材——《数字信号处理理论、算法与实现》第三版中的相关内容(第545-547页),旨在帮助学习者理解和实践AR模型在功率谱估计中的应用。 简介 AR模型是一种常用的时间序列分析方法,通过建立当前值与其过去值之间的线性关系来描述时间序列的动态特性。功率谱估计是信号处理中的关键环节,用于揭示信号频率成分的分布。本仿真通过自相关方法实现AR模型参数的估计,并进而计算信号的功率谱。 特点 含详细注释:代码中添加了丰富的注释,便于初学者理解每一步的计算逻辑和目的。 参数可调:用户可根据需要调整AR模型的阶数(p值)、信号长度等参数,以适应不同的信号分析需求。 理论联系实际:通过将书本知识转化为实践操作,加深对AR模型及其在功率谱估计中应用的理解。 使用说明 环境要求:确保你的计算机上已安装MATLAB,并且版本适合运行提供的脚本。 加载脚本:将提供的MATLAB文件导入到MATLAB的工作环境中。 修改配置:根据需要修改代码中的参数配置,如AR模型的阶数等。 运行仿真:执行脚本,观察并分析输出结果,包括自回归模型的系数以及估算出的功率谱。 学习与分析:通过对比不同参数下的结果,深入理解AR模型在功率谱估计中的行为。 注意事项 在使用过程中,可能需要基础的数字信号处理知识以便更好地理解代码背后的数学原理。 请确保你的MATLAB环境已正确设置,能够支持脚本中的所有函数和运算。 结论 此资源对于研究信号处理、通信工程或是进行相关学术研究的学生和科研人员来说是一个宝贵的工具。它不仅提供了理论知识的具体实现,也是提升实践技能的优秀案例。通过动手操作,你将更加熟练地掌握AR模型及其在功率谱估计中的应用技巧。 开始探索,深入了解AR模型的力量,解开信号隐藏的秘密吧!
提供了关于时间序列分析与预测的宝贵资源,特别聚焦于**自回归积分滑动平均模型(ARIMA)**及其应用。对于那些希望深入理解并实践时间序列建模的学者、研究人员以及数据分析爱好者来说,这是一个不可或缺的学习材料。本资源不仅包括了详细的理论讲解,涵盖了时间序列分析的基础,如移动平均(MA)、自回归(AR)、指数平滑等关键概念,而且通过具体的ARIMA模型解析,搭配MATLAB编程实现实例,帮助用户从理论到实践全面掌握这一重要统计工具。 内容概览 理论讲解: 深入浅出地介绍了时间序列分析的基本原理,重点阐述ARIMA模型的构建步骤,包括如何识别模型的参数(p,d,q),以及其在处理非平稳数据中的作用。 MATLAB代码实现: 提供了多个ARIMA模型的MATLAB实现示例,这些代码覆盖了从数据准备、模型拟合、诊断检验到预测的全过程,是学习如何利用MATLAB进行时间序列分析的实用工具。 实例分析: 包括不同行业或领域的实际案例研究,展示如何应用ARIMA及其它时间序列方法解决真实世界的数据预测问题,增强理解和应用能力。 文件结构 时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar: 主要资源压缩包,解压后包含文档和MATLAB代码文件夹。 文档: 提供了理论知识讲解。 MATLAB代码: 实现了文中讨论的各种模型,附带注释,便于理解与修改。 使用指南 下载资源: 点击下载“时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar”文件。 解压文件: 解压缩至本地,确保你可以访问文档和代码。 环境准备: 确保你的电脑上已安装MATLAB,并熟悉基本操作。 学习流程: 首先阅读文档理解时间序列分析的理论基础,然后逐步跟随MATLAB代码示例进行实践。 实践应用: 尝试将所学应用到自己的数据集上,调整参数以优化模型性能。 注意事项 请根据M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值