V搜xhliang0246
码龄4年
关注
提问 私信
  • 博客:33,590
    33,590
    总访问量
  • 35
    原创
  • 30,944
    排名
  • 501
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:培训,内训15600760673

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河北省
  • 加入CSDN时间: 2020-07-15
博客简介:

xhlo521的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    241
    当月
    51
个人成就
  • 获得719次点赞
  • 内容获得1次评论
  • 获得422次收藏
创作历程
  • 35篇
    2024年
成就勋章
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【无标题】

这些特征包括滑坡造成的地形地貌、植被、水系及景观生态等的异常突变,以及滑坡体本身在形态、颜色、纹理等方面的变化。在复杂山地地区,滑坡是一种常见的自然灾害,其图像识别对于预防、监测和应对滑坡灾害具有重要意义。滑坡监测与预警:通过滑坡图像识别技术,实现对滑坡的实时监测和预警,为灾害预防和应急响应提供科学依据。数据处理与解释的不确定性:滑坡图像识别涉及大量的数据处理和解释工作,存在一定的不确定性和主观性。复杂地形的影响:复杂山地地区的地形地貌复杂多变,给滑坡图像识别带来了一定的难度。
原创
发布博客 13 小时前 ·
346 阅读 ·
4 点赞 ·
0 评论 ·
12 收藏

林业遥感智能监测应用

遥感卫星监测技术的应用:遥感卫星监测技术作为林业遥感智能监测的重要组成部分,通过高分辨率的卫星图像可以直观地获取森林的分布范围、覆盖面积以及类型等信息。此外,遥感卫星监测技术还可以用于监测森林生态系统的整体健康和变化、打击非法砍伐活动等方面,为林业资源的保护和管理提供有力支持。这包括森林类型的判别、森林覆盖率的估计、森林面积的变化监测等。最后,林业遥感智能监测是一个不断发展的领域,随着技术的不断进步和应用的深入,其监测精度和效率将不断提高,为森林资源的保护和管理提供更加有力的支持。
原创
发布博客 前天 09:06 ·
637 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

遥感林地前时相与后时相变化检测算法提取

例如,如何准确提取变化信息、如何减少噪声和误差的影响、如何提高算法的效率和精度等。此外,不同地区的林地类型和变化模式也可能存在差异,这要求算法具有一定的适应性和灵活性。遥感林地前时相与后时相变化检测算法提取涉及多个步骤,包括数据获取、预处理、特征计算、阈值设定和变化检测等。遥感林地前时相与后时相变化检测算法提取是一个复杂但至关重要的过程,它涉及多个步骤和算法,以准确识别和提取林地在不同时间点的变化。更复杂的后处理步骤,如形态学操作(如膨胀、腐蚀)、连通域分析等,可以帮助进一步改进变化检测的结果。
原创
发布博客 2024.11.11 ·
555 阅读 ·
5 点赞 ·
0 评论 ·
14 收藏

基于深度学习的地物类型的提取

具体来说,深度学习模型可以从遥感影像中提取多层次的特征信息,包括颜色、纹理、形状等,然后利用这些特征信息对影像中的每个像素或区域进行分类。请注意,实际应用中可能需要根据具体需求调整代码。传统的地物分类方法依赖于人工设计的特征和基于规则的分割算法,但随着遥感图像数据形式的多样化、数据规模的增加以及数据分辨率的提高,这些传统方法已难以满足精确的边界提取和分类任务。基于深度学习的地物类型提取是遥感技术和计算机视觉领域的一个重要应用,它利用深度学习算法对遥感影像进行自动分析和分类,以识别出不同类型的地物。
原创
发布博客 2024.11.09 ·
959 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

应用人工智能技术进行遥感图像解译

未来,随着人工智能技术的不断提升和完善,其在遥感图像解译中的应用将更加广泛和深入。神经网络(NN):模拟人脑神经系统的算法,具有良好的学习能力和自适应性,可以自动识别特征,提高遥感影像的解译效率。主成分分析(PCA):用于数据降维的算法,可以将高维信息转换为更低的维度显示,同时保留图像中重要的信息。决策树(DT):通过对遥感影像进行分类来实现图像的解译,简单易懂,易于理解,可以有效地处理多维数据集。聚类分析(CA):通过计算样本向量间的相似性,将相似的样本归为一类,实现对图像的分割和识别。
原创
发布博客 2024.11.08 ·
460 阅读 ·
24 点赞 ·
0 评论 ·
5 收藏

地质灾害遥感影像AI识别应用场景搭建指南

地质灾害是指由自然因素或人为活动引发的,对人类社会造成损失的地质事件。随着人工智能(AI)技术的发展,其在地质灾害识别中展现出巨大的潜力。AI可以利用遥感影像数据进行自动化分析,快速识别地质灾害的风险区域,提高预警的准确性和时效性。本项目旨在搭建一个基于AI的地质灾害遥感影像识别系统,实现对特定区域内地质灾害的自动检测和分类,为防灾减灾提供技术支持。如果需要,可以开发一个简单的用户界面,让用户可以通过浏览器上传遥感影像并查看预测结果。在实际应用中,需要根据具体的模型和数据格式进行调整和完善。
原创
发布博客 2024.11.07 ·
585 阅读 ·
12 点赞 ·
1 评论 ·
12 收藏

肿瘤数据的预处理与清洗

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。通过科学有效的数据预处理和清洗方法,可以提高肿瘤数据的可靠性和可用性,为后续的肿瘤研究和临床应用提供有力的支持。
原创
发布博客 2024.09.10 ·
884 阅读 ·
11 点赞 ·
0 评论 ·
13 收藏

深度学习在智慧健康与医疗方面的学术前沿

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。Python中有多个库可以实现这一功能,如Jinja2。上述代码是一个简化的例子,实际应用中可能需要更复杂的网络结构、更多的数据增强策略以及更细致的调参过程。
原创
发布博客 2024.09.10 ·
1205 阅读 ·
33 点赞 ·
0 评论 ·
7 收藏

深度学习在医疗图像上的应用

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。然而,需要注意的是,深度学习模型的性能受到多种因素的影响,包括数据集的质量、模型的复杂度以及训练过程中的超参数设置等。远程医疗:深度学习技术使得远程医疗成为可能。
原创
发布博客 2024.09.05 ·
1139 阅读 ·
31 点赞 ·
0 评论 ·
26 收藏

通过学习完成影像组学的学习,了解并会使用相关软件,完成分析

完成影像组学的学习并熟练使用相关软件进行数据分析,通常涉及多个步骤,包括数据预处理、特征提取、特征选择与降维、模型构建与验证等。由于影像组学的具体实现可能依赖于不同的软件和编程语言(如Python、MATLAB、R等),以下我将以Python为例,概述一个基本的影像组学分析流程,并包含一些简化的代码示例。1.影像组学是一种从医学图像中提取和定量分析图像特征的技术,旨在捕捉组织和病变的特性,如形状、异质性等,并用于临床决策支持。4.特征提取:从预处理后的图像中提取影像组学特征,包括形态学特征、纹理特征等。
原创
发布博客 2024.09.05 ·
2071 阅读 ·
37 点赞 ·
0 评论 ·
18 收藏

利用多模态LLM对多模态的医学影像进行理解、综合分析

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。多模态LLM能够处理来自不同模态(如图像、文本等)的数据,通过融合这些不同模态的信息,提供更全面、准确的诊断结果。这种方法简单且有效,适用于传统的机器学习方法。
原创
发布博客 2024.09.03 ·
1353 阅读 ·
26 点赞 ·
0 评论 ·
17 收藏

使用Python进行核磁数据预处理

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。根据具体的应用和数据类型,你可能需要调整或添加额外的步骤。对于更高级的处理,如图像分割或NMR数据的复杂处理,你可能需要查阅更专业的文献或使用更专业的软件工具。
原创
发布博客 2024.09.03 ·
2301 阅读 ·
34 点赞 ·
0 评论 ·
23 收藏

颈动脉斑块的MR图像分割

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。以下是一个基于一般流程的描述,包括可能的步骤和示例代码(使用Python和OpenCV库),但请注意,实际应用中可能需要针对特定数据集和需求进行调整和优化。
原创
发布博客 2024.09.02 ·
1044 阅读 ·
22 点赞 ·
0 评论 ·
19 收藏

CT转化MR图像的算法及模型解决

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。直接从一个CT图像生成一个视觉上相似的MR图像(特别是具有相同解剖结构和相似组织对比度的图像)是一个未解决的问题,因为这两种成像方式捕获的信息类型本质上是不同的。
原创
发布博客 2024.09.02 ·
1271 阅读 ·
13 点赞 ·
0 评论 ·
11 收藏

医学领域预训练大模型的基本原理和算力资源受限条件下的使用方案

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。使用较小的模型:选择较小的模型变体,如DistilBERT,它是在BERT基础上精简得到的,具有相似的性能但参数量更少,因此计算成本更低。
原创
发布博客 2024.09.01 ·
769 阅读 ·
16 点赞 ·
0 评论 ·
7 收藏

医学领域实现基于大模型和本地知识库的智能问答系统

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。次将对前沿的人工智能应用案例进行详细的解析,帮助学员快速实践ChatGPT加持下的临床科研应用方法,加快各单位有AI实战经验的高端人才培养。
原创
发布博客 2024.09.01 ·
1134 阅读 ·
34 点赞 ·
0 评论 ·
15 收藏

深入学习AI大模型服务平台的选型应用相关技术和问诊咨询

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。次将对前沿的人工智能应用案例进行详细的解析,帮助学员快速实践ChatGPT加持下的临床科研应用方法,加快各单位有AI实战经验的高端人才培养。
原创
发布博客 2024.08.31 ·
1856 阅读 ·
37 点赞 ·
0 评论 ·
26 收藏

医学领域使用Python语言的逻辑和代码的规范

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。次将对前沿的人工智能应用案例进行详细的解析,帮助学员快速实践ChatGPT加持下的临床科研应用方法,加快各单位有AI实战经验的高端人才培养。
原创
发布博客 2024.08.24 ·
932 阅读 ·
27 点赞 ·
0 评论 ·
7 收藏

搭建GAN对抗生成网络进行图像模态转换

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。次将对前沿的人工智能应用案例进行详细的解析,帮助学员快速实践ChatGPT加持下的临床科研应用方法,加快各单位有AI实战经验的高端人才培养。
原创
发布博客 2024.08.24 ·
808 阅读 ·
29 点赞 ·
0 评论 ·
14 收藏

搭建transformer模型进行多通道图像的肿瘤分割训练及测试

随着医学与人工智能技术的快速崛起,伴随算法算力、数据等关键要素的积累和突破,人工智能技术在精准医学领域的科研应用也随之飞快增长,相关科研成果和学术论文数量逐年激增,医学影像人工智能涉及的技术如图像分割、病灶识别、病灶自动勾画、影像组学、深度学习模型构建和临床信息解析越来越趋于分析流程化,模块化,帮助越来越多的医生在临床科研实践中获得突破性的进展。次将对前沿的人工智能应用案例进行详细的解析,帮助学员快速实践ChatGPT加持下的临床科研应用方法,加快各单位有AI实战经验的高端人才培养。
原创
发布博客 2024.08.23 ·
801 阅读 ·
28 点赞 ·
0 评论 ·
7 收藏
加载更多