三层神经网络前向后向传播示意图

转载https://blog.csdn.net/yunpiao123456/article/details/52526907

三层神经网络的信号传播,两个输入,两个隐层,一个输出。输入层不算,三层分别为:两层隐藏层和一层输出层。

 

这里写图片描述

网络中每个紫色模块是一个神经元,它包括信号输入求和,求和后的信号再经过激活函数处理(一般是非线性激活函数),得到输出 
这里写图片描述

下面开始训练网络的流程,训练网络首先需要训练数据,对于我们这里的网络,训练数据为若干组 (x1,x2)及对应的期望输出 z 。

我们首先来进行前向信号传播计算,其中第一隐层计算如下:

这里写图片描述

这里写图片描述

这里写图片描述

第二隐层计算如下:

这里写图片描述

这里写图片描述

输出层的信号计算如下:

这里写图片描述

下面开始误差后向传播计算,输出层的误差如下

这里写图片描述

第二隐层的误差信息计算如下:

这里写图片描述

这里写图片描述

第一隐层的误差信号计算如下:

这里写图片描述

这里写图片描述

这里写图片描述

最后根据误差信号进行权值更新,如下图所示:

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

系数h 决定了学习的速率。有一些选择参数的方法。第一种方法是选择较大的值开始网络训练。然而,当权重系数确定之后,参数值急剧减小。第二种方法比较复杂,参数值从较小开始。在学习的过程中,参数值增加,然后在最后阶段再一次减小参数值。用小参数值训练网络能够决定权重系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值