三层神经网络前向后向传播示意图

转载https://blog.csdn.net/yunpiao123456/article/details/52526907

三层神经网络的信号传播,两个输入,两个隐层,一个输出。输入层不算,三层分别为:两层隐藏层和一层输出层。

 

这里写图片描述

网络中每个紫色模块是一个神经元,它包括信号输入求和,求和后的信号再经过激活函数处理(一般是非线性激活函数),得到输出 
这里写图片描述

下面开始训练网络的流程,训练网络首先需要训练数据,对于我们这里的网络,训练数据为若干组 (x1,x2)及对应的期望输出 z 。

我们首先来进行前向信号传播计算,其中第一隐层计算如下:

这里写图片描述

这里写图片描述

这里写图片描述

第二隐层计算如下:

这里写图片描述

这里写图片描述

输出层的信号计算如下:

这里写图片描述

下面开始误差后向传播计算,输出层的误差如下

这里写图片描述

第二隐层的误差信息计算如下:

这里写图片描述

这里写图片描述

第一隐层的误差信号计算如下:

这里写图片描述

这里写图片描述

这里写图片描述

最后根据误差信号进行权值更新,如下图所示:

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

系数h 决定了学习的速率。有一些选择参数的方法。第一种方法是选择较大的值开始网络训练。然而,当权重系数确定之后,参数值急剧减小。第二种方法比较复杂,参数值从较小开始。在学习的过程中,参数值增加,然后在最后阶段再一次减小参数值。用小参数值训练网络能够决定权重系数。

### 基本神经网络架构概述 基本神经网络由输入层、隐藏层以及输出层构成。每一层都包含了多个节点(也称为神经元),这些节点之间相互连接形成网络传播路径[^3]。 - **输入层**负责接收外部数据传递给下一层。 - **隐藏层**位于输入层和输出层之间,可以有一个或多个。这是执行主要计算的地方,在这里权重被应用到传入的数据上,通过激活函数处理。 - **输出层**用于给出最终的结果或者预测值。 对于各层之间的连接方式而言: - 权重决定了信号强度的变化程度;例如`label iaW00`代表从输入节点0到A层节点0的权重量化关系。 - 偏置项则允许模型更好地拟合数据集中的模式;比如`aB0`指的是A层节点0处设置的具体偏移量。 下面是一个简单的三层神经网络结构图示例: ![Basic Neural Network Diagram](https://miro.medium.com/max/1400/1*yaEJXzgRrUOQKfYVjDhPuw.png) 此图为典型的全连接型人工神经网络布局,展示了如何构建一个具有单个隐含层的基础框架。每个圆圈代表一个单独的神经单元,而箭头指示信息流动的方向。 ```python import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense model = Sequential([ Dense(64, activation='relu', input_shape=(784,)), # 输入层至第一个隐藏层 Dense(64, activation='relu'), # 中间隐藏层 Dense(10, activation='softmax') # 输出分类结果 ]) ``` 上述代码片段定义了一个拥有两个隐藏层的基本多层感知机(Multilayer Perceptron),其中第一层接受维度为784大小的向量作为输入,将其映射到64维空间中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值