转载https://blog.csdn.net/yunpiao123456/article/details/52526907
三层神经网络的信号传播,两个输入,两个隐层,一个输出。输入层不算,三层分别为:两层隐藏层和一层输出层。
网络中每个紫色模块是一个神经元,它包括信号输入求和,求和后的信号再经过激活函数处理(一般是非线性激活函数),得到输出
下面开始训练网络的流程,训练网络首先需要训练数据,对于我们这里的网络,训练数据为若干组 (x1,x2)及对应的期望输出 z 。
我们首先来进行前向信号传播计算,其中第一隐层计算如下:
第二隐层计算如下:
输出层的信号计算如下:
下面开始误差后向传播计算,输出层的误差如下
第二隐层的误差信息计算如下:
第一隐层的误差信号计算如下:
最后根据误差信号进行权值更新,如下图所示:
系数h 决定了学习的速率。有一些选择参数的方法。第一种方法是选择较大的值开始网络训练。然而,当权重系数确定之后,参数值急剧减小。第二种方法比较复杂,参数值从较小开始。在学习的过程中,参数值增加,然后在最后阶段再一次减小参数值。用小参数值训练网络能够决定权重系数。