
深度学习之与学习相关的技巧(篇四超参数的验证)
深度学习超参数是在机器学习模型中,在模型训练之前设定的一些参数。这些参数不是通过模型训练学习得到的,而是需要人为设定或通过某些优化方法来调整的。超参数对模型的性能有重要影响,因此它们的设定通常需要根据具体问题和数据集的特点来进行调整。:在模型训练过程中,学习率决定了参数更新的步长大小。学习率过大可能导致训练不稳定,过小则可能导致训练过程缓慢。:批量大小是指在一次梯度更新中使用的样本数量。批量大小的大小会影响模型的收敛速度和稳定性。:迭代次数是指整个数据集被遍历并用于训练模型的次数。










