洛谷P1004

题目传送门:传送门p1004

题目背景

NOIP 2000 提高组 T4

题目描述

设有 N×NN×N 的方格图 (N≤9)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00。如下图所示(见样例):

某人从图的左上角的 AA 点出发,可以向下行走,也可以向右走,直到到达右下角的 BB 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 00)。
此人从 AA 点到 BB 点共走两次,试找出 22 条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数 NN(表示 N×NN×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 00 表示输入结束。

输出格式

只需输出一个整数,表示 22 条路径上取得的最大的和。

输入输出样例

输入 #1

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

输出 #1

67

说明/提示

数据范围:1≤N≤91≤N≤9。

一道四维dp题,虽然二维也能骗点分……

先说二维dp的思路:

二维的思路偏向贪心,即定义dp[ i ][ j ]为走到点[ i , j ]时的最佳选项,此时保证第一遍走的时候为最佳答案,第二遍走时为去掉第一遍走过的点时的最佳答案,保证两遍都是分别的最佳答案但非整体的最佳答案……,未懂的同学可以向下看,“特殊”情况:

0 0 2 3 0 0 0
0 0 3 0 0 0 0
0 0 3 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 4 0 0
0 0 0 0 4 0 0
0 0 0 0 4 0 0
如图,走第一遍可得出终点时最大值为20,去掉已经走过的点后图如下:
0 0 0 3 0 0 0
:----------: :----------: :----------: :----------: :----------: :----------: :----------:
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
然后会发现我们无法全部走完,也正符合贪心策略,“只注重眼前的利益”,因此此题使用二维dp绝非正解,上代码:

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏梓乔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值